Ad-hoc Coastal Steelhead Advisory Group: June 14 Meeting

Toby Harbison
James Losee
Amy Edwards
Anja Huff

WILDLIFE

Proviso Implementation Strategy

Timeline

Complete Management Framework

Public \& Commission Review, Revisions

Spring \& Summer

Dec. 2022

Winter

Apply framework to individual systems

Monitoring \& Evaluation

Hook and Line Test Fisheries

Objective: Produce a standardized estimate of catch and harvest that is independent of creel, catch record cards, guide logbooks etc. to be tracked over multiple years.

Theoretical Weekly Schedule for Test Angler(s)

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Type of Angling	Guided Boat		Non- guided Shore	Non- guided Boat		Non- Guided Soat	

Discussion topics:

- Schedule (weekend vs. weekday)
- Fishing location.
- Randomly choose guide vs. select, voluntary guides.
- Ratio of guide to non-guide days.

Fishery Regulations

1. Choose a coastal river and consider how the fisheries regulations discussed might impact that river, both in terms of biology and socioeconomics.
2. Are there alternative methods the Department should consider when determining fisheries regulations?

Fishery Regulations (cont.)

- Starting season with restrictive regulations and expanding if possible
- How useful are town hall meetings?
- Fishing from a floating device
- Hatchery targeted fisheries
- Considerations for rainbow trout
- Coastal WA as a "destination fishery"
- Co-manager communication

5 Minute Break

Hatchery Production

- Primary goal for CSPIP: Meet pre-existing SSMP genetic influence thresholds
\rightarrow Increase or decrease releases depending on wild steelhead run size and available fishery and hatchery tools
\rightarrow Manage proactively to optimize utilization around hatchery releases

WDFW Hatchery Steelhead Modeling

Anja Huff
WDFW HEAT Unit

Introduction

- The Statewide Steelhead Management Plan (SSMP) indicates that hatchery impacts on wild populations should not exceed 2% geneflow, and/or 30% pHOS and 0.70 PNI
- Estimates of geneflow and pHOS have not been evaluated for coastal steelhead programs since their inception
- Models Used
$>$ Integrated Programs Modeled with the AHA Model
$>$ Segregated Programs modeled with the Demographic Geneflow Model (DGM)

All-H Analyzer (AHA) Model

- Uses hatchery and natural population data to provide estimates of pHOS and PNI.
- SSMP set standard of pHOS $<30 \%$ and $\mathrm{PNI} \geq 0.70$

Productivity data used to model natural-origin abundance:
$>S A R \%$
$>$ Recruits per spawner
>Harvest Rate

- HEAT Hatchery Performance Tables for Steelhead used to verify model inputs:
$>$ SAR\%
$>$ Harvest Rate
> Trapping Efficiency

Late Winter Steelhead Program						
Parameters	Bogachiel	Lake Aberdeen	Bingham Creek	Skookumchuck	Newaukum	Eight Creek
Prod ${ }_{\text {Adult }}$	3.25	2.5	3.5	2.5	2.5	3.0
Prod $_{\text {Smolt }}$	81	63	88	63	63	75
Cap ${ }_{\text {Adult }}$	8,500	2,475	3,400	2,300	2,300	4,000
Cap ${ }_{\text {Smolt }}$	212,500	61,875	85,000	57,500	57,500	100,000
Fecund $_{\text {NOR }}$	3,913	3,833	3,911	3,980	3,980	3,980
\%Fem ${ }_{\text {NOR }}$	50\%	50\%	50\%	50\%	50\%	50\%
$S^{\text {SR }}$ obs	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%	4.0\%
SAR ${ }_{\text {PDO }}$	PDO	PDO	PDO	PDO	PDO	PDO
$\mathrm{HR}_{\text {NOR }}$	25\%	8.5\%	8.5\%	12.7\%	12.7\%	12.7\%
HR ${ }_{\text {HOR }}$	45\%	80\%	72\%	54\%	56\%	54\%
Sprespawn	80\%	90\%	99\%	99\%	99\%	99\%
Fecund $_{\text {HOR }}$	3,193	3,833	3,874	3,980	3,980	3,980
\%Fem нов $^{\text {¢ }}$	50\%	50\%	50\%	50\%	50\%	50\%
$\mathrm{S}_{\text {egg-smolt }}$	85\%	81\%	90\%	95\%	85\%	95\%
SAR ${ }_{\text {yearling }}$	3.00\%	2.6\%	2.3\%	3.3\%	0.40\%	2.0\%
$\mathrm{RRS}_{\text {HOS }}$	100\%	80\%	80\%	80\%	80\%	80\%
\%Hatch ${ }_{\text {return }}$	0\%	25\%	60\%	75\%	10\%	5\%
\#Yearlings	Input	Input	Input	Input	Input	Input
Brood $_{\text {local }}$	Calculated	Calculated	Calculated	Calculated	Calculated	Calculated
\%NOR ${ }_{\text {max }}$	30\%	30\%	30\%	30\%	30\%	30\%

Colors denote confidence levels in the parameter values (Green = High), (Yellow = Moderate), (Red = Low).

Demographic Geneflow Model (DGM)

Geneflow Model Assumptions

- Hatchery spawning and trap dates to determine mean spawn date and cutoff (e.g. March $15^{\text {th }}$)
- Model results has a high-level of sensitivity to trapping efficiency.
$>$ Lacking data on actual trapping efficiency
- Uses six-year average for hatchery and wild escapement

Natural Stock:	North River Wild				Willapa River Wild				Naselle River Wild			
Hatchery Stock:	Forks Creek EWS								Naselle EWS			
Parameter	Stray Rate $=0.20$		Stray Rate $=0.30$		Stray Rate $=0.20$		Stray Rate $=0.30$		Stray Rate $=0.40$		Stray Rate $\mathbf{= 0 . 5 0}$	
	$\mathrm{K}_{1}=0.02$	$\mathrm{K}_{1}=0.13$	$\mathrm{K}_{1}=0.02$	$3_{1}=0.18$	$\mathrm{K}_{1}=0.02$	$\mathrm{K}_{1}=0.13$	$\mathrm{K}_{1}=0.02$	$\mathrm{K}_{1}=0.13$	$\mathrm{K}_{1}=0.02$	$\mathrm{K}_{1}=0.13$	$\mathrm{K}_{1}=0.02$	$\mathrm{K}_{1}=0.13$
Spawners prior to Mar15	0.1042	0.1042	0.1042	0.1042	0.1127	0.1127	0.1127	0.1127	0.1718	0.1718	0.1718	0.1718
O_{N}	0.0401	0.0401	0.0401	0.0401	0.0535	0.0535	0.0535	0.0535	0.0409	0.0409	0.0409	0.0409
O_{H}	0.0141	0.0141	0.0141	0.0141	0.0511	0.0511	0.0511	0.0511	0.0854	0.0854	0.0854	0.0854
K_{1}	0.0200	0.1300	0.0200	0.1300	0.0200	0.1300	0.0200	0.1300	0.0200	0.1300	0.0200	0.1300
K_{2}	0.5400	0.5400	0.5400	0.5400	0.5400	0.5400	0.5400	0.5400	0.5400	0.5400	0.5400	0.5400
Homing Rate	0.1000	0.1000	0.0500	0.0500	0.8000	0.8000	0.7000	0.7000	0.6000	0.6000	0.5000	0.5000
Stray Contribution Rate	0.1533	0.1533	0.3237	0.3237	0.0035	0.0035	0.0060	0.0060	0.0036	0.0036	0.0054	0.0054
Hatchery Spawning Ground Strays	100	100	210	210	141	141	241	241	145	145	217	217
Natural Spawners	571	571	571	571	784	784	784	784	780	780	780	780
Adj. Natural Spawners	637	637	637	637	884	884	884	884	942	942	942	942
9	0.1353	0.1353	0.2483	0.2483	0.1374	0.1374	0.2145	0.2145	0.1333	0.1333	0.1874	0.1874

Colors denote confidence levels in the parameter values (Green = High), (Yellow = Moderate), (Red = Low).

O(H) Relative to Hatchery/Wild Spawning Overlap

Mean Spawning Dates \& Cutoff

		Mean			
Facility/ Population	Population	Spawning Date	Mean Spawning Day Number ${ }^{1}$ (day)	Standard Deviation (day)	Natural/Hatchery Cutoff Date/²
Bogachiel/ Calawah River	Natural Winter	April 22	143	27.6	January 29
Bogachiel	EWS	January 2	33	17.2	February 23
Bogachiel	ESS	November 16	-15	18.2	January 9
Humptulips River	Natural Winter	April 28	149	15.9	March 11
Wynoochee River	Natural Winter	April 20	141	23.6	February 12
Humptulips	EWS	January 5	36	15.4	February 20
Humptulips	ESS	December 26	26	7.3	January 17
Lake Aberdeen	ESS	December 11	11	6.2	January 1
North River	Natural Winter	April 2	123	15.7	February 18
Willapa River	Natural Winter	April 7	128	19.0	February 9
Naselle River	Natural Winter	April 1	122	18.0	February 6
Forks Creek	EWS	January 19	50	15.7	March 7
Naselle	EWS	January 21	52	18.0	March 7

Gary Marston \& Toby Harbison

Region 6 staff, including Robert Allan, Kim Figlar-Barnes, Matt Heil, Curt Holt, Kenneth Isaksson, Lyle Jennings, John Larson, Michael Lucero, Jody Pope, and Mike Scharpf, who provided invaluable data, including redd counts, harvest rates, and hatchery program information.

Adaptive Strategy

- Do not exceed SSMP genetic influence thresholds in
Conservation Focus, Transitional, nor Maintenance
- Re-run models
- Open vs. Closed Fisheries
- Hatchery Equilibrium Protocol

Wild Gene Banks (aka Wild Steelhead Management Zones)

- One WGB per major population group
(MPG) in each distinct population segment (DPS) \rightarrow at least one MPG per WRIA
- Sufficiently abundant and self-sustaining
- No hatchery releases
- Fisheries permitted if management objectives are met
- Stakeholder \& comanager process

Next Steps

- Read the Artificial Production section of the Statewide Steelhead Management Plan
(SSMP) \rightarrow come to the next meeting prepared to discuss
- Optional: Review drafts and send feedback no later than 2 weeks prior to the next meeting
- Optional: Provide feedback/ideas for freshwater test fishery
- Next meetings: August, September, November

Zoom reminders for public comments

- You can type a question through the Q\&A function or ask a question by "raising your hand." If you're calling in you can raise a hand by dialing *9 on your phone, or if you're calling from a computer, you can find the hand icon at the bottom of your screen.
- To speak you will need to unmute yourself by using the mute button on your computer or mobile device or enter *6 if you're calling from a land line.
- If you have a technical issue, please drop us a note in the $\mathrm{Q} \& A$ and we will help you through it.
- You can also submit general feedback on coastal steelhead management at wdfw.wa.gov/coastal-steelhead

