

2017 North of Falcon Salmon Forecasts

1

2017 Forecast Meeting Schedule

9:00 – 9:30	 Introduction Welcome and Introduction North of Falcon – Setting S in 2017 	Kyle Adicks					
9:30-10:00 10:00 - 11:00	Habitat Presentation		Jeff Davis				
10.00 11.00	 2017 Environmental Outloo Columbia Salmon Stocks Puget Sound and Coast Chi Pink, Chum, Sockeye Stock 	Marisa Litz Ron Roler Aaron Dufault					
	PFMC Salmon Technical Tea	am Review	Wendy Beeghley				
11:00 - Noon	 Regional Discussion Sessions Puget Sound Recreational Columbia River & Ocean Coastal Puget Sound Commercial 	Room GA Aud. NRB 682 NRB 630 Room SLO 03	Mark, Ryan, Aaron Kyle(s), Wendy, Ron R Annette Kirt, Kendall, Kwasi, Marisa				
Noon – 1:00 pm	Lunch Break						

1:00 – 3:00 Regional Discussion Sessions Continued

2017 NOF Meeting Schedule

Date	Purpose	Time/Location
Feb. 28	NOF Forecast Meeting	9AM, Olympia
Mar. 7	Grays Harbor Advisory Group	6-8pm, Montesano City Hall
Mar. 14	Willapa Bay Advisory Group	6-8pm, Raymond High School Library
Mar. 15	N. Sound Rec. Fisheries	6-8pm, WDFW Mill Creek
Mar. 16	Puget Sound Rec. Fisheries Sequim	6-8pm, Trinity Methodist Church, Sequim
Mar. 17	NOF Public Meeting #1	9am-3pm, GA Auditorium, Olympia
Mar. 23	Willapa Bay Public Meeting	6-8pm, Raymond Elks
Mar. 24	Columbia R. and Ocean Fisheries Disc.	9am-3pm, Vancouver Water Resources Center
	Public Hearing on Ocean Salmon	
Mar. 27	Mgmt Options	7pm, Chateu Westport
Mar. 28	Mid-Columbia R. Fisheries Disc.	6-8pm, Chelan PUD
Mar. 28	Grays Harbor Fisheries Discussion	6-8nm Montesano City Hall
Mar. 20	Mid-Columbia/Snake Fisheries Disc.	6-8pm. Walla Walla Community College
Mar. 30	Columbia R. Fisheries Disc.	6-8pm. Benton PUD Auditorium
Mar. 30	Willapa Bay Fisheries Disc.	6-8pm, Raymond High School Library
Apr. 4	NOF #2	9:30-5pm, Lynnwood Embassy Suites
Apr. 5	Columbia R./Ocean Fisheries Disc.	9am-1pm, Office Building 2 Auditorium, Olympia
April 7-12	PFMC #2	Double Tree Sacramento

http://wdfw.wa.gov/fishing/northfalcon/

Handouts

- •Agenda/Schedule
- FWC Policies (NOF & Hatchery/Fishery Reform)
- PFMC Tables
- Regional Forecast Details:
 - Puget Sound Chinook
 - Puget Sound Coho
 - Puget Sound Chum & Sockeye
 - Columbia River Chinook & Coho
- Presentation slides (http://wdfw.wa.gov/fishing/northfalcon/)

WASHINGTON DEPARTMENT OF FISH AND WILDLIFE

Habitat Program

Jeff Davis | Assistant Director

Fishery is smaller

AND THE REAL PROPERTY OF

Decades ago

How do we get there – the critical "H"?

Protect existing habitat + Restore degraded habitat

Examples – HB 1428/SB 5466 and Capital Budget

What's the goal?

Making way for salmon

https://www.youtube.com/watch?v=X7z5anXzm0k

Ocean Conditions in the NE Pacific from 2015-2017

Washington Department of **FISH and WILDLIFE**

Marisa Litz and Aaron Dufault

Acknowledgements: LaurieWeitkamp, NOAA Fisheries

Outline

- Update on the Warm Blob, El Niño, and La Niña
- Physical and biological observations
- NWFSC environmental indicators (stoplight chart)
- Short-term forecast

Take-Home Messages:

- Warm ocean conditions since 2014 are starting to cool off
- Cold wet winter in 2016/2017 is good for freshwater habitat
- Impacts of warm ocean will persist for the next year or two

Sea Surface Temperature Anomalies

North Pacific cools during fall 2016

Oct 20, 2016

Dec 20, 2016

Feb 20, 2017

NWS/NCEP/EMC Marine Modeling and Analysis Branch10AA/NWS/NCEP/EMC Marine Modeling and Analysis Branch Oper H.R. NOAA/NWS/NCEP/EMC Marine Modeling and Analysis Branch Oper H.R.

polar.ncep.noaa.gov/sst/ophi/

SST Anomaly February 20, 2017

NOAA/NWS/NCEP/EMC Marine Modeling and Analysis Branch Oper H.R.

RTG_SST_HR Anomaly (0.083 deg X 0.083 deg) for 20 Feb 2017

2015/2016 El Niño and 2016/2017 La Niña

www.climate.gov/enso

Typical El Niño Pattern

www.climate.gov

Typical La Niña Pattern

www.climate.gov

Environmental Indicators 1997-present

Low biomass of lipid-rich copepods

High biomass of lipid-poor copepods

NH-5 Copepod Species Richness

17 new to the central OR Coast copepod species observed in 2014-2016,

many are Transition Zone/North Pacific Current species

Figure courtesy of B. Peterson and J. Fisher

Environmental Indicators: www.nwfsc.noaa.gov

Basin-scale physical indices

Regional physical indices

Regional biological indices

Eccsystem Indicators 199 1999 1999 2000 2001 2001 2001 2001 2011 2012 2013 2014 <th2< th=""><th></th><th colspan="13">Year</th><th></th></th2<>		Year																		
PDO (Sum Dec March) 16 66 3 12 7 13 11 15 13 9 5 11 14 4 2 8 10 10 4 6 5 11 15 14 16 12 13 12 13 12 13 12 9 7 3 1 8 11 8 10	Ecosystem Indicators	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	PDO	4.0	6	2	12	_	10		4.5	40	_	-				-	_	10	10	47
PDO (Sm MaySept) 10 44 66 57 11 15 14 16 12 13 10 10 1 8 17 19 10 OM (Merage lan June) 18 11 11 11 11 11 11 12 14 13 15 8 11 13 10 16 4 55 7 9 7 13 11 12 13 13 14 13 14 14 15 11 13 14 17 13 11 13 44 11 13 14 13 14 13 14 14 13 14 14 13 14 13 14 13 14 14 13 14 14 13 14 14 13 14 14 13 14 14 15 11 13 14 14 13 14 14 13 14 14 14 15 11 13 14 14 13 14 14 15 14 15 14 15 11 15 14 15 11 15 16 11 15 11 16 17 <td>(Sum Dec-March)</td> <td>16</td> <td>6</td> <td>3</td> <td>12</td> <td>/</td> <td>18</td> <td>11</td> <td>15</td> <td>13</td> <td>9</td> <td>5</td> <td>1</td> <td>14</td> <td>4</td> <td>2</td> <td>8</td> <td>10</td> <td>19</td> <td>17</td>	(Sum Dec-March)	16	6	3	12	/	18	11	15	13	9	5	1	14	4	2	8	10	19	17
Sum Ma Seq.) IC IC <thic< th=""> IC IC</thic<>	PDO	10	Δ	6	5	11	15	14	16	12	13	2	٩	7	3	1	8	17	19	18
ONI (Average Jan-June) 18 1 <	(Sum May-Sept)	10	-	Ŭ		-11	15		10	12	15	2		<i>'</i>	<u> </u>	-	<u> </u>	- 1	15	10
(Average Ian June)151611	ONI	18	1	1	6	12	14	13	15	8	11	3	10	16	4	5	7	9	17	19
46050 s ST ("C, Max-Sent) 18 8 3 4 1 7 19 14 5 16 2 9 66 10 11 12 13 18 13 18 17 19 11 18 10 66 10 11 11 18 10 66 10 11 13 14 11 13 14 11 13 14 11 13 14 11 13 14 11 13 14 11 13 14 11 13 14 11 13 14 11 13 14 11 13 14 13 14 13 14 14 13 14 14 13 14	(Average Jan-June)																			
$ \begin{array}{ c c } (C_{1}Ma_{V}, Sept) & 10 & 0 & 0 & 11 & 10 & 10 & 10 & 10 $	46050 SST	15	0	2	4	1	7	10	14	E	16	2	0	6	10	11	12	12	10	17
Upper 20 m T (C; Nov-Mar)1811810614131415121351916437121910Upper 20 m T (C; May-Sept)15111341101216115437184371891843718918437189184371891843718918437189184371891843718918437181913Dee p salinity (May-Sept)183845151516141010101118191011101216141010111819111819111811	(°C; May-Sept)	13	0	3	7	-		15	14	5	10	2	9	0	10	-11	12	15	10	17
(°; Nov-Mar) (°)	Upper 20 m T	18	11	8	10	6	14	15	12	13	5	1	9	16	4	3	7	2	19	17
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(°C; Nov-Mar)	10		Ŭ	10	Ŭ	11			10		認識		ni ini uni uni			N CANADARAN	-	17	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Upper 20 m T	15	11	13	4	1	3	19	17	7	8						1960	18	9	14
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(°C; May-Sept)					-	Ŭ			,	Ŭ	建 调用 四倍的				-			<u> </u>	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Deeptemperature	19	6	8	4	1	10	12	16	11	5				(O)	1	9 S	18	17	13
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(°C; May-Sept)										-			and the second s		100	1 al			
(May-Sept) I <thi< th=""> <thi< td=""><td>Deepsalinity</td><td>18</td><td>3</td><td>8</td><td>4</td><td>5</td><td>15</td><td>16</td><td>9</td><td>6</td><td>1</td><td></td><td></td><td></td><td>21</td><td>-</td><td>18</td><td>19</td><td>14</td><td>7</td></thi<></thi<>	Deepsalinity	18	3	8	4	5	15	16	9	6	1				21	-	18	19	14	7
Copepod richness anom. (no. species; May-Sept) 17 2 1 7 6 13 12 16 14 10 2 5 11 18 19 N. copepod biomass anom. (mg Cm ³ ; May-Sept) 17 13 9 10 3 13 12 10 10 12 10 10 10 10 11 18 19 S. copepod biomass anom. (mg Cm ³ ; May-Sept) 19 2 5 4 3 13 14 10 10 14 4 9 5 13 19 19 Biological transition (day of year) 17 11 6 7 8 12 10 16 15 14 11 11 33 13 9 7 18 4 5 Ichthyoplankton biomass (log (mc C1000 m ³ ; Jan-Mar) 19 10 2 6 8 17 18 12 15 14 11 11 33 13 9 7 18 4 5 Ichthyoplankton community index (PCOaxis 1 scores; Jan-Mar) 16 7 <td>(May-Sept)</td> <td></td> <td>1255</td> <td></td> <td></td> <td>-Pontone -</td> <td>2010</td> <td>-</td> <td></td> <td></td> <td></td>	(May-Sept)											1255			-Pontone -	2010	-			
(no. species; May-Sept)171391031512161616161617181919N. copepod biomass anom. (mg Cm ³ ; May-Sept)171391031512 $Winter IchtspolarityWinter Ichtspolarity111391919S. copepod biomass anom.(mg Cm3; May-Sept)1925431314Winter Ichtspolarity11495131919Biological transition(day of year)17116781210161531214495131919Ichthyoplankton biomass(log (mg C 1000 m3); Jan-Mari)(chthook salmon juvenilecatches (no. km4; June)102681716121514111313971845Mean ofranks16.47.05.76.95.811.914.615.511.08.72.78.111.87.96.37.412.015.315.3Rank ofthe mean rank19625313151811101912847141616$	Copepod richness anom.	17	2	1	7	C	12	12	10	14	10			The function for		C. C	5.00 F	11	10	10
N. copeod biomass anom. (mg C m ³ ;Max-Sept) 17 13 9 10 33 15 12 S. copeod biomass anom. (mg C m ³ ;Max-Sept) 19 2 5 4 3 13 14 15 16 17 18 9 10 13 9 13	(no. species; May-Sept)	17	2	1		0	15	12	10	14	10				有限的資源		C. C. States	11	18	19
Image Cm ³ : May-Sept)	N. copepod biomass anom.	17	13	٩	10	3	15	12				_			-					
S. copped biomass anom. (mg C m ³ ; May-Sept) 19 2 5 4 3 13 14 Biological transition (day of year) 17 11 6 7 8 12 10 16 15 3 11 2 14 4 9 5 13 19 19 Ichthyoplankton biomass (log (mg C 1000 m ³); Jan-Mar) 19 10 2 6 8 17 16 12 15 14 11 3 13 9 7 18 4 5 Ichthyoplankton community index (PCO axis 1 scores; Jan-Mar) 10 2 6 8 17 16 12 15 14 11 3 13 9 7 18 4 5 Ichthyoplankton community index (PCO axis 1 scores; Jan-Mar) 10 18 17 13 17 13 17 13 17 13 17 13 17 13 17 13 17 13 17 13 17 13 17 13 17 13 17 13 17 18	(mg C m ⁻³ ; May-Sept)	17	15	3	10	3	15	12	V	/int	er	lch	th	JOD	lan	ikto	on E	Bior	nas	S -
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S. copepod biomass anom.	19	2	5	4	3	13	14						γ ° Γ						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(mg C m ⁻³ : Mav-Sept)											_								
$\frac{(cay of year)}{(lchthyoplankton biomass)}{(log (mg C 1000 m^3); Jan-Mar)} = 10$ 19 10 2 10 10 10 10 10 10 10 10	Biological transition	17	11	6	7	8	12	10	16	15	3	1	2	14	4	9	5	13	19	19
$\frac{19}{10} = 10 = 10 = 2 = 6 = 8 = 17 = 16 = 12 = 15 = 14 = 1 = 11 = 13 = 13 = 9 = 7 = 18 = 4 = 5$ $\frac{100 \text{ (mg c} 1000 \text{ m}^3); \text{ Jan-Mar}}{100 \text{ Jan-Mar}} = 1998 = Worst = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 1$	(day of year)																			
$\frac{100 \text{ fmg C} 1000 \text{ fm} (2 \text{ Jan-Mar})}{\text{Ichthyoplankton community}}} \xrightarrow{\text{Idex} 1998 = \text{Worst}}{\text{Chinock salmon juvenile}} \xrightarrow{\text{Catches (no. km^{-1}; June)}} \xrightarrow{\text{Idex} 13} \xrightarrow{\text{Idex} 13} \xrightarrow{\text{Idex} 17} \xrightarrow{\text{Idex} 13} \xrightarrow{\text{Idex} 17} \xrightarrow{\text{Idex} 13} \xrightarrow{\text{Idex} 17} \xrightarrow{\text{Idex} 13} I$		19	10	2	6	8	17	16	12	15	14	1	11	3	13	9	7	18	4	5
$\frac{10}{1000} \frac{18}{1000} 18$	(log (mg C 1000 m); Jan-War)																			
$\begin{array}{c} 1998 = Worst \\ \hline Chinook salmon juvenile \\ catches (no. km^{-1}; June) \\ \hline Coho salmon juvenile \\ catches (no. km^{-1}; June) \end{array} \qquad \begin{array}{c} 1998 = Worst \\ Score \\ \hline \\ 2 \\ \hline \\ 15 \\ \hline \\ 15 \\ \hline \\ 15 \\ \hline \\ 15 \\ \hline \\ 11 \\ \hline \\ 0 \\ 15 \\ \hline \\ 11 \\ 0 \\ \hline \\ 15 \\ \hline \\ 11 \\ 0 \\ 1 \\ \hline \\ 11 \\ 0 \\ 1 \\ \hline \\ 11 \\ 0 \\ 1 \\ 1 \\ 11 \\ 1$	index (PCO axis 1 scores: lan-Mar)				. ,	_	10	18					14	15				^		
Catches (no. km ⁻¹ ; June) Score 13 17 Worst Score 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 9 10 6 7 9 10 6 7 9 10 6 7 9 10 6 7 9 10 6 7 9 10 10 10 10 8.7 2.7 8.1 11.8 7.9 6.3 7.4 12.0 15.3 15.3 Mean of ranks 19 6 2 5 3 13 15 18 11 10 1 9 12 8 4 7 14 16 16	Chinook salmon juvenile	1	998	3 = V	Vor	st			2	005	= 2 ^r	าด		_	2	2015	+ 20)16 =	: tie	d <mark>-</mark>
Coho salmon juvenile catches (no. km ⁻¹ ; June) SCOPE 2 15 WOrst SCOPE 9 10 TOP 3 ⁻¹⁴ VOIST SCOPE Mean of ranks 16.4 7.0 5.7 6.9 5.8 11.9 14.6 15.5 11.0 8.7 2.7 8.1 11.8 7.9 6.3 7.4 12.0 15.3 15.3 Rank of the mean rank 19 6 2 5 3 13 15 18 11 10 1 9 12 8 44 7 14 16 16	catches (no. km ⁻¹ : June)	Case			13 17					~			for ard Monat Coord							
Catches (no. km ⁻¹ : June) 16.4 7.0 5.7 6.9 5.8 11.9 14.6 15.5 11.0 8.7 2.7 8.1 11.8 7.9 6.3 7.4 12.0 15.3 15.3 Mean of ranks 19 66 22 55 3 13 15 18 10 2.7 8.1 11.8 7.9 6.3 7.4 12.0 15.3 15.3 Rank of the mean rank 19 6 2 5 3 13 15 18 10 11 9 12 8 4 7 14 16 16	Coho salmon juvenile		2	cor	e		2	15	VV	orst	Sco	ore	~	10		or 3.		orst :	Scor	e <mark>-</mark>
Mean of ranks 16.4 7.0 5.7 6.9 5.8 11.0 15.5 11.0 8.7 2.7 8.1 11.8 7.9 6.3 7.4 12.0 15.3 15.3 Rank of the mean rank 19 6 2 5 3 13 15 18 10 1 9 12 8 4 7 14 16 16	catches (no. km ⁻¹ ; June)						2	15					9	10						
Rank of the mean rank 19 6 2 5 3 13 15 18 11 10 1 9 12 8 4 7 14 16 16	Mean of ranks	16.4	7.0	5.7	6.9	5.8	11.9	14.6	15.5	11.0	8.7	2.7	8.1	11.8	7.9	6.3	7.4	12.0	15.3	15.3
	Rank of the mean rank	19	6	2	5	3	13	15	18	11	10	1	9	12	8	4	7	14	16	16

Fish abundance, condition, and unusual pelagic community

- Salmon CPUE low in the ocean in 2015 and 2016
- Body condition low in 2015, high in 2016
- Unusual fish community in the ocean

Water jellies

Pompano

Jack mackerel

skinny fish 2015 🗸

High condition

Terrestrial impacts on salmon production

Atmosphere-ocean influences terrestrial system

Monthly WA-OR-ID temperature and precipitation anomalies, 2013-2017

Snowpack – Feb 2015

Record low snowpack in the PNW

www.wcc.nrcs.usda.gov/gis/snow.html

Snowpack – Feb 2016

Average snowpack + warm spring = low snowpack

www.wcc.nrcs.usda.gov/gis/snow.html

Snowpack – Feb 2017

Average conditions at current time

www.wcc.nrcs.usda.gov/gis/snow.html

Columbia River flow low in 2015, peaked early in 2016, and was similarly low after mid-May as 2015

Spring **2016** river temperatures are nearly as hot as they were in **2015**!

2015-2017: Pseudo-nitzschia diatom blooms

- Neurotoxin (domoic acid) produced by algae can be fatal to mammals (amnesiac shellfish poisoning)
- Domoic acid detected in hundreds of marine mammals and sea birds along the West Coast
- Large blooms closed recreational and commercial clam and crab fisheries in WA, OR, and CA

Unusual salmon observations in 2015

Bristol Bay sockeye ocean age 3 adults extremely small body size

Gulf of Alaska

Islands

Berin

North Pacific Ocean

Columbia & Oregon coast coho lowest returns since 1990s Oregon coast Chinook returns high Interior Fraser & Salish Sea coho extremely low abundance, small body size, and low fecundity

> Extremely low downstream survival Central Valley Chinook & steelhead (drought)

Modified from L. Weitkamp

Unusual salmon observations in **2016**

Fraser sockeye North Pa lowest on record

High chum returns WA & OR coasts, Columbia

Gulf of Alaska

Modified from L. Weitkamp

Bering Sea

Islands

Tropical fish off Vancouver Island, Oregon Coast

Swordfish off Oregon Extremely abundant sea lions in PNW; 1st time females seen

2017 Columbia River Fall Chinook and Coho Forecasts

Columbia River Fall Chinook

Six major stock groups

- SAB Select Area Brights
- LRH Lower River Hatchery (tule stock)
- LRW Lower River Wild
- MCB Mid-Columbia Brights (3 sub components)
- BPH Bonneville Pool Hatchery (tule stock)
- URB Upriver Bright
- Most constraining stock recently is LRH, which is used to represent Lower Columbia River Natural (LCR) tule stock.

Fall Chinook Stocks and General Destination

Select Area Brights (SAB) Fall Chinook

2016 Forecast: 15,800 2016 Return: 6,700 2017 Forecast: 13,700

Lower River Hatchery (LRH) Fall Chinook

2016 Forecast: 133,700 2016 Return: 81,900

2017 Forecast: 92,400

LCR Tule Exploitation Rate Matrix

<u>LRH Run Size</u>

- <30,000
- **30,000 40,000**
- **40,000 85,000**
- >85,000

LCR Tule ER

- **30%**
- **35%**
- **38%**
- **41%**

Based on 2017 LRH forecast of 92,400 fish, ocean and in-river fisheries will be managed to not to exceed a 41% exploitation rate (ER)

Lower River Wild (LRW) Fall Chinook

Bonneville Upriver Bright (BUB) Fall Chinook

Pool Upriver Bright (PUB) Fall Chinook

Upriver Bright (URB) Fall Chinook

Bonneville Pool Hatchery (BPH) Fall Chinook

Total Tule Fall Chinook

Total Bright Fall Chinook

2016 Forecast: 728,800 2016 Return: 515,400 2017 Forecast: 332,000

Total Fall Chinook

Columbia River Coho Ocean Abundance

LCN Coho Exploitation Matrix

- Marine Survival Index (Hatchery Jack returns per smolt released)
 - Very Low $\leq 0.06\%$
 - Low ≤ 0.08%
 - Medium ≤ 0.17%
 - High ≤ 0.40%
 - Very High > 0.40%

- Allowed Exploitation Rate:
 - Very Low 10%
 - Low 15%
 - Medium 18%
 - High 23%
 - Very High 30%

- The marine survival index is 0.13% (medium) and the average 'seeding' for the indicator populations is 100% - well above the 30% minimum.
- Based on this information, the allowable exploitation rate for 2017 is 18%.

Columbia River Coho Releases (in millions of fish)

■ Below BON ■ Above BON

Columbia River Coho - recap

- Survival rates have remained relatively stable in the 2000's (albeit, relatively low in 2016).
- Upriver coho releases increased steadily during 1970-1998, and have stabilized since.
- Lower Columbia River hatchery Coho releases have decreased overall since 1990's.
- Based on the new Coho matrix, the allowable exploitation rate in 2017 is 18%.

2017 Bottom Line

- Good Fall Chinook return forecasted
 - Below recent average returns forecasted for most stocks
 - Estimate 582,600 adults, still a good return
- Fair Columbia River Coho ocean forecast
 - Below average returns forecasted for both stocks
 - Forecast is about 71% of the 10 year average
 - Estimate 386,300 adults (60% 'S' stock)

Questions?

WA Coast and Puget Sound 2015 Returns and 2016 Forecasts

Chinook Salmon

Chinook Historical Runsize – Puget Sound

2016 Wild Fall Chinook Returns

- All returns are preliminary
- Returns range from Good to Poor
- All Puget Sound rivers Neutral to Good

Relative to Recent 10yr Avg. Escapement

2017 Wild Fall Chinook Forecasts

- Forecasts in Puget Sound and Coast range from Poor to Good
- Coastal forecast are all Neutral
 - (Chehalis and Quinault forecasts not included)

Relative to Recent 10yr Avg. Runsize

P. Sound Hatchery Chinook Forecasts

Puget Sound hatchery Chinook forecast ₹13% from recent 10 year avg (127% from 2016 forecast)

Coastal Chinook Forecasts

The Coastal Chinook forecast is equal to the recent 10 year avg.

Coho

Coho Historical Runsize – Puget Sound

2016 Wild Coho Returns

- Returns ranged from
 Poor to Neutral Puget
 Sound and Coast
- No data available for several stocks

Relative to Recent 10yr Avg. Escapement

So/ Duc Rive

2017 Wild Coho Forecasts

- Forecasts range from
 Poor to Good across
 Puget Sound and coast
- Several N. Sound rivers expecting poor returns

Relative to Recent 10yr Avg. Runsize

Good > 125%
 Neutral 75-125%
 Poor < 75%

P. Sound Coho Forecasts

Aggregate Puget Sound Coho forecast ↓ 6% from recent 10 year avg. (118% above 2016 forecast)

Pink

Pink Historical Runsize

2015 Pink Returns

- Returns ranged from Good to Poor
- Small body size common
- Returned during drought, followed by floods

Relative to Recent 10yr Avg. Runsize

Good > 125%
 Neutral 75-125%
 Poor < 75%

So/ Duc River

2017 Pink Forecasts

- Forecasts are mostly poor, except for Hood Canal
- Very poor outmigrating fry numbers from most systems

Relative to Recent 10yr Avg. Runsize

2017 Pink Forecasts

Puget Sound Pink forecast **4** 82% from recent 10 year avg.

Chum

Chum Historical Runsize

2016 Fall Chum HOR/NOR Returns

- Returns ranged from Good to Poor
- Hood Canal and S. Puget Sound are relative to inseason updated runsizes, not escapement

Relative to Recent 10yr Avg. Escapement

Good > 125% Neutral 75-125% Poor < 75%

2017 Fall Chum HOR/NOR Forecast

- Forecasts range from Good to Poor
- Hood Canal 493k
- Central/S. Sound 433k
- Coast Willapa 58k
 Grays H 31k

Relative to Recent 10yr Avg. Runsize

Puget Sound Chum Forecasts

Hatchery ₹ 33% and Wild ₹ 32% over recent 10 year avg.

74

Coastal Chum Forecasts

Willapa Bay 🕇 86% and Grays Harbor 🖊 1% over recent 10 year avg.

Sockeye

Puget Sound Sockeye Runsize

2016 Sockeye HOR/NOR Returns

Returns ranged from Good to Poor

Relative to Recent 10yr Avg. Escapement

2017 Sockeye HOR/NOR Forecast

- Baker Lake 47k
- Lake WA 77k
- Columbia river 192k

Ood > 125%
 Neutral 75-125%
 Poor < 75%

Puget Sound Sockeye Forecasts

Lake WA 🖶 1% and Baker 👚 79% over recent 10 year avg.

Columbia Sockeye Forecasts

Lake Wenatchee 🖶 11% and Okanogan 🖶 41% over recent 10 year avg.

Questions?

Salmon Technical Team Pre I Table 1 – Preseason Chinook Forecasts

TABLE I-1. Preseason adult Chinook sa	Imon stock	forecasts	in thousa	nds of fish	n. (Page 1	of 3)				
Production Source and Stock or										
Stock Group	2009	2010	2011	2012	2013	2014	2015	2016	2017	Methodology for 2017 Prediction and Source
Sacramento Index										
Fall	122.2	245.5	729.9	819.4	834.2	634.7	652.0	299.6	230.7	Log-log regression of the Sacramento Index on jack escapement from the previous year, accounting for lag-1 autocorrelated errors. STT.
Klamath River (Ocean Abundance) Fall	505.7	331.5	371.1	1,651.8	727.7	299.3	423.8	142.2	54.2	Linear regression analysis of age-specific ocean abundance estimates on river runs of same cohort. STT.
Oregon Coast North and South/Local Migrating										None.
Columbia Pivor (Ocean Escapoment)										
Upriver Spring ^a	298.9	470.0	198.4	314.2	141.4	227.0	232.5	188.8	160.4	Log-normal sibling regressions of cohort returns in previous run years. Columbia River TAC.
Willamette Spring	37.6	62.7	104.1	83.4	59.8	58.7	55.4	70.1	38.1	Age-specific linear regressions of cohort returns in previous run years. ODFW staff. Forecasts include jacks.
Sandy Spring	5.2	3.7	5.5	4.8	6.1	5.5	5.5	NA	3.6	
Cowlitz Spring	4.1	12.5	6.6	8.7	5.5	7.8	11.2	25.1	17.1	Age-specific linear regressions of cohort returns in previous run years. WDFW.
Kalama Spring	0.9	0.9	0.6	0.7	0.7	0.5	1.9	4.9	3.1	Age-specific linear regressions of cohort returns in previous run years. WDFW.
Lewis Spring	2.2	6.0	3.4	2.7	1.6	1.1	1.1	1.0	0.7	Age-specific linear regressions of cohort returns in previous run years. WDFW.
Upriver Summer ^{b/}	70.7	88.8	91.9	91.2	73.5	67.5	73.0	93.3	63.1	Log-linear brood year sibling regressions or average return (4-ocean fish). Columbia River TAC subgroup.
URB Fall	259.9	310.8	398.2	353.5	432.5	973.3	500.3	589.0	260.0	Age-specific average cohort ratios or brood year sibling regressions. Columbia River TAC subgroup and WDFW.
SCH Fall	59.3	169.0	116.4	63.8	38.0	115.1	160.5	89.6	158.4	Age-specific average cohort ratios or brood year sibling regressions. Columbia River TAC subgroup and WDFW.
LRW Fall	8.5	9.7	12.5	16.2	14.2	34.2	18.9	22.2	12.5	Age-specific average cohort ratios or brood year sibling regressions. Columbia River TAC subgroup and WDFW.
LRH Fall	88.8	90.6	133.5	127.0	88.0	110.0	94.9	133.7	92.4	Age-specific average cohort ratios or brood year sibling regressions. Columbia River TAC subgroup and WDFW.
MCB Fall	94.5	72.6	100.0	90.8	105.2	360.1	113.3	101.0	45.6	Age-specific average cohort ratios or brood year sibling regressions. Columbia River TAC subgroup and WDFW.

STT - Pre I Table 1 – Chinook Forecasts Page 2

TABLE I-1. Preseason a	dult Chinook	salmon s	stock for	ecasts in	thousan	ds of fisl	n. (Page	2 of 3)			
Production Source and											
Stock or Stock Group		2009	2010	2011	2012	2013	2014	2015	2016	2017	Methodology for 2017 Prediction and Source
Willapa Bay Fall	Natural	2.0	2.0	2.0	5.2	4.9	2.9	3.8	3.3	4.2	Return per spawners applied to 3-6 year olds (brood years 2011- 14) adjusted by brood year performance.
	Hatchery	34.8	31.1	31.1	40.5	22.2	29.5	31.0	36.2	34.3	Return per spawners applied to 3-6 year olds (brood years 2011- 14) adjusted by brood year performance.
Quinault Fall	Natural	6.9	7.6	5.9	7.7	4.0	6.0	8.1	5.5	NA	
	Hatchery	7.8	5.5	4.7	3.8	3.1	10.3	4.0	5.3	NA	
Queets Spring/Sum	Natural	0.4	0.4	0.4	0.4	0.4	0.5	0.4	0.5	0.5	Forecast by age; age breakout is based on the fall stock.
Queets Fall	Natural	4.5	4.1	2.7	5.8	3.8	3.6	4.3	4.9	3.7	
	Hatchery	1.2	9.8	1.9	1.8	0.9	0.9	1.5	1.7	0.9	Natural-origin fall Chinook age 3 and 7 forecast are based on recent year average return/spawner. Age 4-6 forecast are based on sibling regressions. Age specific indicator stock forecast are based on recent year average return/smolt adjusted by brood performance.
Hoh Spring/Summer	Natural	1.1	0.8	1.0	1.0	0.9	0.9	0.8	0.9	1.0	Spawner/Recruit all years geometric mean for each age class
Hoh Fall	Natural	2.6	3.3	2.9	2.7	3.1	2.5	2.6	1.8	2.7	Spawner/Recruit of recent 3 years adjusted by previous brood performance for all ages
Quillayute Spring	Hatchery	2.0	1.5	1.4	1.5	2.1	2.0	1.7	1.8	2.2	Recent 2 year mean adjusted by previous performance.
Quillayute Sum/Fall	Natural	6.8	7.5	8.8	7.4	6.6	7.6	8.5	7.5	7.6	Summer: Recent 5 year mean for all ages except age-3. Used the regression of age-3 to escapement. Fall: Recent 5 year means; adjusted for previous 5 year forecast performance
Hoko ^{e/}	Natural	1.0	1.8	0.6	1.9	1.2	2.7	3.3	2.9	1.5	Includes supplemental. 2017 Recruits for age-3's 5 year average return, age 4-6 sibling regression
North Coast Totals											
Spring/Summer	Natural	1.5	1.2	1.4	1.4	1.3	1.4	1.2	1.4	1.5	
Fall	Natural	20.8	22.5	20.3	23.6	17.5	19.7	23.5	19.7	14.0	
Spring/Summer	Hatchery	2.0	1.5	1.4	1.5	2.1	2.0	1.7	1.8	2.2	
Fall	Hatchery	9.0	15.3	6.6	5.6	4.0	11.2	5.5	7.0	0.9	
Puget Sound summer/fa	all ^{c/}										
Nooksack/Samish	Hatchery	23.0	30.3	37.5	44.0	46.3	43.9	38.6	27.9	21.2	Two year average observed terminal run
East Sound Bay	Hatchery	0.1	2.3	0.4	0.4	1.9	1.2	1.2	0.7	0.8	Avererage of previous two years
Skagit ^{d/}	Natural	23.4	13.0	14.3	8.3	12.9	18.0	11.8	15.1	15.8	Hierarchical Bayesian model to estimate the spawner-recruit dynamics.
	Hatchery	0.6	0.9	1.5	1.3	0.3	0.3	0.6	0.4	0.4	Recent 4 year average terminal smolt to adult return rate to estimate age classes 3 – 5

STT - Pre I Table 1 – Chinook Forecasts Page 3

TABLE I-1. Preseason a	adult Chino	ok salmo	n stock	forecast	s in thou	isands d	of fish. (I	Page 3 o	f 3)		
Production Source and Stock or Stock Group		2009	2010	2011	2012	2013	2014	2015	2016	2017	Methodology for 2017 Prediction and Source
Stillaguamish ^{e/}	Natural	1.7	1.4	1.8	0.9	1.3	1.6	0.5	0.5	1.5	Natural plus Hatchery. Multiple regression environmental model (EMPAR).
Snohomish ^{e/}	Natural Hatchery	8.4 4.9	9.9 5.6	7.4 5.2	2.8 3.9	3.6 6.9	5.3 5.4	4.2 3.3	3.3 5.0	3.4 4.8	Multiple regression environmental model (EMPAR) Average terminal run.
Tulalip ^{e/}	Hatchery	4.0	3.4	3.5	5.9	10.9	4.7	1.3	1.4	5.3	Multiple regression environmental model (EMPAR)
South Puget Sound	Natural	17.2	12.7	8.9	8.9	5.0	4.8	3.8	4.5	4.7	Puyallup R. average return per spawner applied to brood years contributing ages 3-5. For Nisqually, 3 year average SAR age specific survival. For Green, 3-year average return/out-migrant rate for each age.
	Hatchery	93.0	97.4	118.6	95.8	102.0	96.7	62.4	43.1	80.4	Average return at age multiplied by smolt release for Green, Nisqually, Puyallup, Carr Inlet, and Area 10E.
Hood Canal ^{d/}	Natural	2.5	2.4	2.2	2.9	3.4	3.5	3.1	2.3	2.5	Natural fish based on the Hood Canal terminal run reconstruction-based relative contribution of the individual Hood Canal management units in the 2014-2016 return years
	Hatchery	40.1	42.6	38.4	43.9	65.7	80.6	59	42.7	48.3	Brood 2013 fingerling lbs released from WDFW facilities in 2014, multiplied by the average of post-season estimated terminal area return rates for the last 3 years (2014-2016).
Strait of Juan de Fuca Including Dungeness spring run ^{d'}	Natural	2.4	1.9	2.5	2.9	3.1	3.8	4.9	3.7	3.1	Natural and hatchery. Dungeness and Elwha hatchery estimated by recent return rates time average releases. Dungeness wild estimated by smolts times average hatchery return rate. Elwha wild estimated using recent 3 year returns from otolith and CWT.

a/ Since 2005, the upriver spring Chinook run includes Snake River summer Chinook.

b/ Since 2005, the upriver summer Chinook run includes only upper Columbia summer Chinook, and not Snake River summer Chinook.

c/ Unless otherwise noted, forecasts are for Puget Sound run size (4B) available to U.S. net fisheries. Does not include fish caught in troll and recreational fisheries.

d/ Terminal run forecast.

e/ Expected spawning escapement without fishing.

STT - Pre I Table 2 – Coho Forecasts Page 1

TABLE I-2. Preseason oce	ean abundano	ce adult co	no salmo	on stock	k toreca	sts in th	ousands	ot fish. (I	age 1 of	r 2)	
Production Sour	ce										
and Stock or Stock Group		2009	2010	2011	2012	2013	2014	2015	2016	2017	Methodology for 2017 Prediction and Source
OPI Area (Total Abundance) (California and Oregon Coasts and Columbia River)		1,284.7	556.0	624.5	632.7	716.4	1,213.7	1,015.0	549.2	496.2	
											Abundance of all OPI components based on cohort reconstructi including all fishery impacts using Mixed Stock Model (MSM); prior 2008 only fishery impacts south of Leadbetter Point were us (traditional OPI accounting). OPITT, see Chapter III for details.
OPI Public	Hatchery	1,073.1	408.0	375.1	341.7	525.4	983.1	808.4	396.5	394.3	OPIH: 1969-2015 Columbia River jacks adjusted for delayed sm
Columbia River Farly	,	672.7	245.3	216.0	229.8	331.6	526.6	515.2	153.7	231.7	Columbia/Coastal proportions based on jacks; Columbia early/la
Columbia River Late		369.7	144.2	146 5	87.4	169 5	437 5	261.8	226.9	154.6	proportions based on jacks; Coastal N/S proportions based on smoll
Coastal N. of Cape Bla	nco	7.3	4.4	3.6	6.4	5.6	4.8	6.9	5.5	3.5	
Coastal S. of Cano Plan		22 /	1/1 1	0.0	10.1	19.0	14.2	24.4	10.4	15	
Coastal 3. Of Cape Blai		23.4	14.1	9.0	10.1	10.7	14.2	24.4	10.4	4.5	
Lower Columbia River	Natural	32.7	15.1	22.7	30.1	46.5	33.4	35.9	40.0	30.1	Oregon: recent two year average retuer Washingtion: natural smolt productio multiplied by 2014 brood marine survival rate Abundance is subset of early/late hatcher abundance above.
Oregon Coast (OCN)	Natural	211.6	148.0	249.4	291.0	191.0	230.6	206.6	152.7	101.9	Rivers: Generalized additive model (GAM) relating ocean recruits parental spawners and marine environmental variables. See text Chapter III for details. Lakes: recent three year average return.
Washington Coast											
Willapa	Natural	33.5	20.4	47.8	81.3	58.6	58.9	42.9	39.5	36.7	
	Hatchery	59.4	78.7	64.7	88.8	37.1	41.0	57.7	28.1	55.0	
Grays Harbor	Natural	59.2	67.9	89.1	150.2	196.8	108.8	142.6	NA	NA	
	Hatchery	63.5	33.3	44.0	47.8	85.2	65.4	46.6	22.9	36.4	
			20.0					.5.0	0	23.1	A variety of methods were used for 2017. primarily based on smolt
Quinault	Natural	16.3	16.7	22.9	27.3	32.1	25.0	44.2	17.1	26.3	production and survival. See text in Chapter III for details.
	Hatcherv	26.2	26.6	35.5	35.4	42 0	24.7	24 9	19.8	29.4	
			20.0	55.5	00.4	72.0	24.1	24.5	13.0	20.4	
Queets	Natural	31.4	21.8	13.3	37.2	24 5	10.3	75	35	65	
	Hatcherv	13.5	11.0	16.0	01.2	10.0	15.5	11.0	0.0 4 F	12.7	
	. accord y	13.5	11.9	10.3	25.3	19.8	15.7	11.3	4.5	13.7	
Hoh	Natural	9.5	7.6	11.6	14.3	8.6	8.9	5.1	2.1	F 0	

STT - Pre I Table 2 – Coho Forecasts Page 2

TABLE I-2. Preseason adu	ult coho salmon	stock fore	casts in t	thousan	ds of fis	h. (Page	2 of 2)				
Production Sou	irce										
and Stock or Stock Group		2009	2010	2011	2012	2013	2014	2015	2016	2017	Methodology for 2017 Prediction and Source
Quillayute Fall	Natural	19.3	22.0	28.2	33.5	17.2	18.4	10.5	4.5	15.8	
	Hatchery	39.5	17.7	31.0	16.9	12.4	12.6	8.0	6.4	17.6	
Quillavute Summer	Natural	2.2	2.8	2.8	5.7	0.5	2.0	1.2	0.3	1.5	
. ,	Hatchery	12.9	3.2	5.4	4.3	3.3	3.2	2.2	1.4	3.4	
North Coast Independer	nt										
Tributaries	Natural	11.1	4.2	21.6	15.7	17.8	15.2	11.7	1.9	6.5	
	Hatchery	14.1	5.7	11.8	11.4	6.3	11.6	11.9	2.5	0.2	
WA Coast Total	Natural	182.5	163.4	237.3	365.2	356.1	247.5	265.6	NA	NA	
	Hatchery	229.1	177.1	208.7	229.9	206.1	174.2	162.6	85.6	155.6	
Puget Sound											
Strait of Juan de Fuca	Natural	20.5	8.5	12.3	12.6	12.6	12.5	11.1	4.4	13.1	A variety of methods were used for 2017 primarily
	Hatchery	7.0	7.8	15.2	18.6	17.6	17.3	11.1	3.9	15.4	based on smolt production and survival. See text in Chapter III and Joint WDFW and tribal annual
Nooksack-Samish	Natural	7.0	9.6	29.5	25.2	45.4	20.8	28.1	9.0	13.2	reports on Puget Sound Coho Salmon Forecast Methodology for details
	Hatchery	25.5	36.0	45.7	62.8	49.2	61.7	50.8	28.8	45.6	
Skagit	Natural	33.4	95.9	138.1	48.3	137.2	112.4	121.4	8.9	11.2	
	Hatchery	11.7	9.5	16.7	14.9	16.3	15.8	19.5	4.9	7.6	
Stillaguamish	Natural	13.4	25.9	66.6	47.5	33.1	32.5	31.3	2.8	7.6	
	Hatchery	0.0	5.4	0.6	4.1	3.1	6.0	0.0	0.0	1.5	
Snohomish	Natural	67.0	99.4	180.0	109.0	163.8	150.0	151.5	20.6	107.3	
	Hatchery	53.6	24.5	55.0	45.7	111.5	78.2	53.9	16.7	62.0	
South Sound	Natural	53.6	25.3	98.9	43.1	36.0	62.8	63.0	9.9	20.2	
South South	Hatchery	188.8	186.4	173.3	162.9	151.0	150.7	180.2	27.1	102.4	
Hood Canal	Natural	48.6	33.2	74 7	73 4	36.8	82.8	61 5	35.3	115.6	
	Hatchery	52.0	51.2	74.9	62.6	68.6	47.6	108.4	83.5	74.9	
Puget Sound Total	Natural	243.5	297.8	600.1	359.1	464.9	473.8	467.9	91.0	288.3	
	Hatcherv	338.6	320.8	381.4	371.6	417.3	377.3	423.9	165.0	309.3	

Find 2017 Preseason I Report at:

http://www.pcouncil.org/salmon/stock-assessment-andfishery-evaluation-safe-documents/preseason-reports/

9:00 - 9:30	Introduction	Kyle Adicks
	Welcome and Introduction	
	North of Falcon – Setting Salmon Fisheries in 2015	
9:30-9:45	Habitat Presentation	Jeff Davis
9:45 – 10:45	Salmon Forecasts 2016	
	2016/17 Environmental Conditions	Marisa Litz
	Columbia River Salmon Stocks	Ron Roler
	Puget Sound and Coast Chinook & Coho Salmon Stocks	Aaron Dufault
	Puget Sound Pink, Chum and Sockeye Salmon Stocks	Aaron Dufault
	PFMC Salmon Technical Team Review	Wendy Beeghley
10:45 - Noon	Regional Discussion Sessions	
	Puget Sound Recreational Room GA Aud.	Mark, Ryan, Aaron
	Columbia River & Ocean NRB 682	Kyle(s), Wendy, Ron R.
	Coastal Room 630	Annette
	Puget Sound Commercial Room SLO 03	Kirt, Kendall, Marisa, Kwasi
Noon – 1:00 pm	Lunch Break	
1:00 - 3:00	Regional Discussion Sessions Continued	

FISH AND WILDLIFE COMMISSION POLICY DECISION

POLICY TI	LE: 2017-2018 North of F	alcon	POLICY NUMBER	R: C-3608
Supersedes:	C-3608, 2015-2016		Effective Date: Termination Date:	January 13, 2017 December 31, 2018
See Also:	C-3001 C-3622 C-3620 C-3621	Approved by: Wash	ington Fish and Wildlife	Chair Commission, January 13, 2017

North of Falcon Policy

This Policy will guide Department staff in considering conservation, allocation, in-season management, and monitoring issues associated with the annual salmon fishery planning process known as "North of Falcon." When considering management issues, Department staff will ensure that decisions are made consistent with: the Department's statutory authority; *U.S. v. Washington; U.S. v. Oregon*; the Endangered Species Act; the Puget Sound Chinook Harvest Management Plan; the Pacific Salmon Treaty; the Pacific Fishery Management Council's Framework Salmon Management Plan; pertinent state/tribal agreements; and the applicable Fish and Wildlife Commission policies.

The Department will implement this Policy consistent with the purposes and intended outcomes described in the 21st Century Salmon and Steelhead Planning Project including:

- Salmon and steelhead will be managed to recovery and to assure sustainability in a way that is science-based, well-documented, transparent, well-communicated, and accountable.
- Fisheries will be managed to meet or exceed ESA, recovery, and conservation goals; and harvest management measures will protect and promote the long-term well-being of the commercial and recreational fisheries.

Fishery Management

<u>General</u>

- On a statewide basis, fishing opportunities will be provided when they can be directed at healthy wild and hatchery stocks.
- Selective fishing methods and gears that maximize fishing opportunity and minimize impacts on depressed stocks will be utilized to the fullest extent possible taking into consideration legal constraints on implementation and budgetary limits associated with required sampling, monitoring and enforcement programs.
- When assessed from a statewide perspective, fishing directed at chinook, coho, pink, sockeye, or chum salmon will not be exclusively reserved for either sport or commercial users.
- When managing sport fisheries, meaningful recreational fishing opportunities will be distributed equitably across fishing areas and reflect the diverse interests of fishers, including retention and catch and release fisheries.
- The Department will seek non-treaty fishing access to unutilized portions of treaty harvest allocations through the implementation of pre-season agreements, taking into consideration changes in abundance, fishery conflicts, and factors that may influence attainment of spawning escapement objectives.

Puget Sound

- The Puget Sound harvest management objectives for chinook and coho stocks, in priority order, are to: (1) provide meaningful recreational fishing opportunities; and (2) identify and provide opportunities for commercial harvest. When managing sport fisheries in this region, recreational opportunities will be distributed equitably across fishing areas, considering factors such as: the uniqueness of each area; the availability of opportunities for various species in each area throughout the season; the desire to provide high levels of total recreational opportunity; and the biological impacts.
- For fisheries directed at Fraser River-origin chum, pink, and sockeye stocks, the majority of harvest will be provided to the commercial fisheries.
- For fisheries directed at harvestable Puget Sound-origin chum stocks, the majority of harvest will be provided to the commercial fisheries.
- For fisheries directed at Lake Washington sockeye, the first 200,000 non-treaty harvest will be provided to recreational fishers. If the allowable non-treaty harvest is greater than 200,000, commercial harvest directed at this stock may be considered.
- For fisheries directed at harvestable Puget Sound origin pink salmon, seasons will be established that provide meaningful opportunities for both recreational and commercial fisheries while minimizing gear and other fishery conflicts.

Grays Harbor

• Grays Harbor will be managed consistent with the Commission's Grays Harbor Policy (POL C-3621).

Willapa Bay

• Willapa Bay will be managed consistent with the Commission's Willapa Bay Salmon Management Policy (POL-C3622).

Columbia River

• The Fish and Wildlife Commission's policy on Columbia River Salmon Management (POL- C3620) shall guide pre-season and in-season planning of Columbia River salmon fisheries. Columbia River harvest management regimes shall be developed in cooperation with Oregon Department of Fish and Wildlife representatives.

Pacific Ocean

• Pacific Ocean harvest shall be managed consistent with the Pacific Fishery Management Council's Framework Salmon Management Plan and the National Standards that provide for fair and equitable allocation of fishing privileges among various fishers.

In-Season Management

- When in-season management actions are taken, they will be implemented in a manner that is consistent with pre-season conservation and harvest management objectives, and the fishery intent developed through the North of Falcon process.
- Prior to use, in-season updates of stock abundance affecting Puget Sound fisheries will be evaluated for technical merit and potential to improve achievement of conservation and allocation objectives.
 - When possible, in-season updates should be documented within the co-manager's annual List of Agreed Fisheries or as part of regional comanager memoranda of understanding.
 - Descriptions of potential modifications to fisheries that are contingent on in-season updates should be included in the List of Agreed Fisheries.

Monitoring and Sampling

- Monitoring, sampling and enforcement programs will be provided to account for species and population impacts of all fisheries.
- Fishery participants will be required to comply with fishery monitoring and evaluation programs designed to account for species and population impacts.

Enforcement and Compliance

- Enforcement strategies will be developed and staffing will be provided to promote compliance with state regulations.
- WDFW Enforcement will seek to establish and maintain effective coordination with Tribal enforcement to enhance the sharing of information.

Gear and Fishery Conflicts

• Recreational and commercial fisheries shall be structured to minimize gear and other fishery conflicts. Unanticipated fishery interaction issues identified in-season, including conflicts with fisheries directed at other species, shall be resolved by involving the appropriate sport and commercial representatives in a dispute resolution process managed by Department staff.

Incidental Mortalities

• The Department will manage fisheries to minimize mortalities on non-target species (e.g. rockfish, sea birds, etc.). Management regimes will include strategies to limit seabird mortalities consistent with the federal Migratory Bird Treaty Act.

Communications

- The Department shall strive to make ongoing improvements for effective public involvement during the North of Falcon planning process and annual salmon fishery implementation, incorporating the following intents:
 - North of Falcon participants will be included as observers during appropriate state/tribal discussions of fishery issues.
 - o All decisions made during the North of Falcon process will be recorded in writing.
 - A variety of tools will be used to effectively communicate with the public, to receive input on pre-season planning or in-season fishery issues, and to make available the record of decisions. Such tools will include: recreational and commercial advisory groups; public workshops to address key issues; the WDFW North of Falcon Web site; and in-season tele-conferences.
 - The Department will increase transparency by consulting with stakeholders throughout the pre-season planning process and prior to making major decisions with the co-managers.

Other Species

• The Fish and Wildlife Commission's policy on Lower Columbia Sturgeon Management (POL-C3001) shall guide pre-season and in-season planning of Columbia River and coastal sturgeon fisheries and related incidental impacts.

Delegation of Authority

The Fish and Wildlife Commission delegates the authority to the Director to make harvest agreements with Northwest treaty tribes and other governmental agencies, and adopt permanent and emergency regulations resulting from the agreements made during the annual North of Falcon process.

Washington Department of Fish and Wildlife North of Falcon Background Information

What is North of Falcon?

- Each year (February-April) state, federal, and tribal fishery managers plan recreational and commercial salmon fisheries for the state and tribes
- Pacific Fishery Management Council (PFMC) establishes ocean salmon seasons from three to 200 miles off the Pacific Coast
- "North of Falcon" (NOF) process involves a series of public and state/tribal meetings to come to an agreement for the upcoming year's salmon fisheries
- NOF is north of Cape Falcon in northern Oregon and encompasses Oregon and Washington (Columbia River, Coast, and Puget Sound)

What Governmental Policies affect the NOF process?

- The Boldt Decision (1974): upheld by the Supreme Court and based upon treaties with the Puget Sound Treaty tribes to allow the state and tribes to manage their own fisheries (co-managers) and share half of the harvestable salmon
- Endangered Species Act (ESA): fisheries must not pose jeopardy ESA-listed fish such as Puget Sound Chinook (1999)
- Pacific Salmon Treaty (U.S./Canada): helps ensure enough fish destined for the southern U.S. are allowed to pass through Canadian waters to allow fishing opportunity and enough fish to reach the spawning grounds (and vice versa for fish returning to Canada)
- Conservation objectives are agreed to by the co-managers to ensure enough fish get past fisheries and reach rivers to spawn and recover the population

What are the steps?

- Estimate the forecasted returns of individual hatchery and wild stocks of salmon
 - \circ $\;$ Determine if enough fish are returning to allow for harvest
- Predict harvest for tribal and state recreational and commercial fisheries for Oregon and Washington; include the northern fisheries (Alaska and Canada) too
- Analyze forecast and harvest scenarios using the Fisheries Regulations Assessment Model (FRAM) to determine whether proposed fishing plans meet management objectives (e.g., ESA impact limits)
- Negotiate with the recreational anglers, commercial fishers, and tribes to allow a fair sharing of catch and ensure conservation objectives are met
- Combine all Puget Sound and ocean fisheries into the "Agreed-to Fisheries Document" that the recreational (sport) fishing rules pamphlet is based upon

Glossary

AEQ: Adult equivalents (number of wild salmon that would have returned to the river if not killed in fisheries)

CERC: Critical exploitation rate ceiling (maximum fishery impacts allowed when a stock is in critically low abundance, see Escapement LAT)

Constraining stock: Wild fish for a particular river that is estimated to be the most overimpacted that will limit (or reduce) fishing opportunities

CWT: Coded-wire tag (placed in nose of juvenile salmon and recovered from adults that return to estimate where the fish is from)

Encounters: Number of fish harvested plus released fish

ESA: Endangered Species Act

ERC: Exploitation rate ceiling (maximum allowable rate of returning wild salmon that can be killed in fisheries without compromising stock recovery)

Escapement LAT: Escapement Low Abundance Threshold (minimum number of naturally spawning salmon needed to recover that stock; if below then stock is in critical status)

Exploitation Rate (ER): Percent of total mortality (i.e., in fisheries and on spawning grounds) that occurs in fisheries, including landed and non-landed fishery mortality components

Forecast: Estimated number of adult salmon that will return

FRAM: Fisheries Regulation Assessment Model (used to combine forecasts and harvest of fisheries to estimate number of wild fish that will return to the rivers to spawn)

LCN: Lower Columbia Natural Tule Chinook (sometimes called LCR, Lower Columbia River, tule)

Release Mortality Rate: Percent of fish released that die due to the encounter with handling

MSF: Mark-selective fisheries (hatchery targeted fishery where wild fish are released)

Escapement: Number of wild salmon returning to the spawning grounds for a particular stock

NOF: North of Falcon (process to establish salmon seasons for state and tribal fisheries)

NT: Non-treaty fisheries (sport and commercial including net and troll)

SUS: Southern United States (WA, OR, CA)

SUS PT ER: Southern U.S. (WA, OR, CA) pre-terminal exploitation rate (caught in marine waters within the southern U.S.)

T: Treaty fisheries (tribal ceremonial/subsistence and commercial: net, freshwater net, troll (tr))

Total ER: Total exploitation rate for Alaska, Canada, and southern U.S.

							Comp Chinook Management Criteria	
								Low Abundance
Region	Watershed	Notes Forecast Type	Hatchery	SuppImt	Wild	Total	RER ¹	Thresholds ^{2 3}
Strait	Hoko	Escape w/o fishing	876		606	1,482	<10% So. U.S.	500 spawners
	Dungeness	Terminal	296		77	373	<10% So. U.S.	500 spawners
	Elwha	Terminal	2,631		153	2,784	<10% So. U.S.	1,000 spawners
	Morse Creek	Terminal	225			225		
	Region total		4,028		836	4,864	4,258	
North Sound	Glenwood Springs	Terminal	772			772		
	Nooksack/Samish	Terminal	21,225			21,225		
	Skagit	Terminal	411		15,837	16,248	50% total	4,800 spawners
	Stillaguamish	Esc. w/o fishing	1038		438	1,476	25% total	700 spawners
	Snohomish	Extreme Terminal w/ harvest	4,780		3,412	8,192	21% total	2,800 spawners
	Tulalip	Terminal Run w Harvest	5,296			5,296		
	Region total		33,522	0	19,687	53,209		
Upper South Sound	Lake Washington	To any in all	0.700			0 700		
	Issaquan		3,722		044	3,722		000
	Cedar	Terminal			811	811	15% preterm So. U.S., 1,680 esc goal	200 spawners
	Sammamish Subregien tetel	Terminar	0 700		137	137		
	Subregion total		3,722		946	4,070		
	Green River							
	Soos Creek Hatchery	Terminal	13,347			13,347		
	Icy Creek		641		0.074	641		
	Mainstem/Newaukum	lerminal			2,374	2,374	12% preterm So. U.S.	
	Subregion total		13,988		2,374	16,362		
	Grovers	Terminal	2,598			2,598		
	East Kitsap (Gorst, Dogfish)	Terminal	6,288			6,288		
	Subregion total		8,886			8,886		
	Puyallup River	Terminal	3,804		945	4,749	50% total	500 spawners
	Upper South Sound Total		30,400		4,267	34,667		

2017 Puget Sound Summer/Fall Chinook Preseason Forecasts

							Comp Chinook Management Criteria	
Region	Watershed	Notes	Hatchery	SuppImt	Wild	Total	RER ¹	Low Abundance Thresholds ³
Lower South Sound	Carr Inlet	Terminal	8,219			8,219		
	Deschutes	Terminal	18,341			18,341		
	Nisqually	Terminal	22,191		478	22,669	52% ERC	700 spawners
	Chambers	Terminal	1,229			1,229		
	Lower South Sound Total		49,980		478	50,458		
	South Sound Total		80,380	0	4,745	85,125		
Hood Canal	Skokomish w/George Adams	Terminal	25,773		1,956	27,729	50% ERC	1,300 spawners ⁴
	12B Naturals	Terminal			326	326	12% PTSUS CERC	400 spawners
	12C/12H/12D	Terminal	22,532		177	22,709		
	Hood Canal Total		48,305	0	2,459	50,764		
	Puget Sound Total		166,235	0	27,727	193,962		
Footnotes	1. RER = Recovery Exploitation Rate	(interim management ceiling during recovery phase).						
	2. Level of spawning abundance that	triggers additional management action.						
	3. Threshhold expressed as natural of	igin spawners						
	4. Aggregate for combined hatchery a	nd wild spawners						

2017 Puget Sound Summer/Fall Chinook Preseason Forecasts (continued)

Puget Sound Spring Chinook 2017 Preseason Forecasts

Notes	Forecast Type	Hatchery	Supplmt	Wild	Total	RER	Low Abundance Thresholds
Nooksack River							
North Fork	Terminal	2,866	1,066	193	4,125	Under Development	1000 spawners ¹
South Fork	Terminal	1,084		32	1,116	Under Development	1000 spawners ¹
Skagit River	Terminal	2,610		2,785	5,395	38% total	576 spawners
White River							
Minter Creek	Terminal	522			522		
White River Hatchery	Terminal	1,494			1,494		
Buckley Trap	Terminal		1,124	593	1,717	20% total	200 spawners
Total White River Springs					3,733		
Total		8,576	2,190	3,603	14,369		
1. Supplementation number is hatchery-	origin acclimated fish (expected to spaw	n in the wild.				
2. Forecast of SF Nooksack stock origin	chinook.						
3. Forecast of returns to the hatchery ra	ick only.						
4. Includes naturally produced spring an	d fall chinook returns a	and acclimation p	ond production.				

	innook i reseat	Hatchery	Wild	Totals	Natural Escapement Goal
North Coast		· · · · · ·			
Quillayute River					
Spring	Terminal	2,152		2,152	200
Summer	Terminal		1,132	1,132	1,200
Fall	Terminal		6,433	6,433	> of 3,000 or 60% of run
Hoh					
Spring/Summer	Terminal		1,000	1,000	>of 900 or 69% of RS
Fall	Terminal		2,725	2,725	>of 1,200 or 60% of RS
Queets					
Spring/Summer	Terminal		-	-	>of 700 or 70% of RS
Fall	Terminal	900	3,692	4,592	>of 2,500 or 60% of RS
Quinault					
Fall	Terminal	0	0	0	
North Coast totals Summe	r/Falls:	900	10.290	11,190	
Spring/	Summers:	2,152	1,000	3,152	14,342
Grays Harbor					
Chehalis springs	Terminal		0	0	1,400
Chehalis falls	Terminal	0	0	0	9,880
Humptulips falls	Terminal	0	0	0	3,620
Subregion Falls Total		0	0	0	
Willapa Bay - Fall Chinook	Terminal	34,328	4,178	38,506	
Coast total		37,380	15,468	52,848	

Washington Coast 2017 Chinack Prospason Forecasts

2016 and 2017 Washington	Coho Forecas	y ¹ Last updated: 02/26/17					
Production unit	2016 Hatchery	2017 Hatchery	2016 Wild	2017 Wild	2016 Total	2017 Total	
Dungeness R	2,915	10,203	116	918	3,030	11,121	
Elwha R	740	1,308	153	359	894	1,667	
Eastern Strait (excl. Dung, Elwha)	-	-	541	2,762		2,762	
Western Strait	-	-	3,886	10,296	3,886	10,296	
West/East sub-total excl. Dung, Elwha	-	-	4,427	13,058	4,427	13,058	
West/East Strait sub-total	3,655	11,510	4,696	14,335	7,810	25,845	
Nooksack R	19,815	39,041	4,750	6,291	24,565	45,332	
Lummi Ponds	8,010	6,568	-	-	8,010	6,568	
7B net pens	0	0	-	-	0	0	
Indian Slough Hatchery	0	0	-	-	0	0	
Samish R	-	-	3,473	6,209	3,473	6,209	
Misc 7&7A (incl. San Juans CoOps)	964	0	765	735	1,729	735	
Nook/Samish R sub-total	28,789	45,609	8,987	13,235	37,776	58,845	
Skagit R sub-total	4,947	7,551	8,912	11,160	13,859	18,711	
	-						
Stillaguamish R sub-total	0	1,520	2,770	7,622	2,770	9,142	
Snohomish B	1.809	9.452	16.740	107.325	18,549	116,777	
Tulalin Bay	18 564	51 626			18 564	51 626	
Area 8A Misc Hatchery	252	880	-	-	252	880	
Snohomish R sub-total	20.625	61.958	16.740	107.325	37.365	169.283	
		01,000			07,000		
Lake Washington	3,502	18,218	912	2,160	4,414	20,378	
Green River	8,012	39,924	958	3,852	8,970	43,776	
Elliot Bay Net Pens	3,270	0	-	-	3,270	0	
Misc. Area 10,11,10E	2,096	6,831	600	1,728	2,696	8,559	
Puyallup R	7,606	19,951	1,576	7,560	9,182	27,511	
Mid-Sound sub-total	24,486	84,924	4,046	15,300	28,532	100,224	
Area 13A-K wild, exc. Deschutes	-	-	4,352	1,575	4,352	1,575	
Area 13A Hatchery (Minter CR)	85	6,546	-	-	85	6,546	
Nisqually R	735	871	1,486	3,290	2,221	4,161	
Deschutes R	-	-	48	67	48	67	
Area 13D net pens (Squaxin Island)	1,798	10,017	-	-	1,798	10,017	
Deep South Sound sub-total	2,618	17,434	5,886	4,932	8,504	22,366	
Mid+Deep South Sound sub-total	27,105	102,358	9,932	20,232	37,036	122,590	
Area 04 (Dort Combio)	14 700	10.002			14 700	10 000	
Area 12A Quilagna D	14,766	10,883	-	-	14,700	10,883	
Area 12A - Quilcene R	41,553	29,813	-	-	41,553	29,813	
Area 12A - Quilcene Net Pens	3,034	2,349	-	-	3,034	2,349	
Area 12/12B	-	-	14,924	35,270	14,924	35,270	
Skekomish P	-	- 17 740	10,459	50,054 10,705	10,439	30,034 27 455	
Aroa 12/12P 12D/Skok P sub total	24,112	17,749	2,929	19,705	28,071	57,455 111 EQE	
Hood Canal sub-total	24,112	60 794	25 222	93,833	119 797	154 629	
	03,403	00,754	55,522	55,655	110,707	134,025	
Puget Sound Total	168,585	291,301	87,359	267,745	255,403	559,045	
Willapa Bay	28,093	54,998	39,516	36,720	67,609	91,718	
Grays Harbor	22,890	NA	4,951	NA	27,841	NA	
Quinault R	19,821	29,435	17,100	26,300	36,921	55,735	
Queets R	4,492	NA	3,494	NA	7,986	NA	
North Coast Indept. Tribs	2,541	132	1,924	6,460	4,465	6,592	
Hoh R	0	0	2,066	5,799	2,066	5,799	
Quillayute R summer	1,368	3,376	285	1,468	1,653	4,844	
Quillayute R fall	6,443	17,619	4,468	15,808	10,911	33,427	
Coast total	85.648	105.560	73.804	92.555	159.452	198,115	

Grand Total	590,333	753,161	205,663	390,400	795,455	1,143,562
	•	•	•	•	•	
Columbia total	336,100	356,300	44,500	30,100	380,600	386,401
Columbia Oregon Wild ³	-	-	6,500	4,400	6,500	4,401
Columbia Hatch/WA Wild Late ²	199,900	133,500	26,100	20,600	226,000	154,100
Columbia Hatch/WA Wild Early ²	136,200	222,800	11,900	5,100	148,100	227,900

Notes:

1) Ocean Age 3 (OA3) abundance

2) Columbia Early and Late Production Unit hatchery forecast categories include hatchery production from all states, Columbia Early and Late Wild Production Unit forecasts contain Washington-origin stocks only.

3) Oregon Wild Production Unit category is summarized separately from Columbia Early and Late categories because it is considered by ODFW to account for entire fall coho return on Oregon side of river.

CHUM, PINK, AND SOCKEYE SALMON CO-MANAGER RUNSIZE FORECASTS FOR THE 2017 RETURN YEAR

CHUM - SUMMER				FORECAST
	HATCHERY	WILD	TOTAL	METHOD
Puget Sound				
Central Sound		2,702	2,702	R/S, recent perform adj.
South Sound		31,014	31,014	R/S, recent perform adj.
Hood Canal*		34,188	34,188	4-year avg.
Strait of Juan de Fuca		11,094	11,094	4-year avg.
Puget Sound Total		78,998	78,998	

* Wild forecast includes supplementation returns.

<u>CHUM - FALL</u>	FORECAST			
	HATCHERY	WILD	TOTAL	METHOD
Puget Sound				
Nooksack/Samish	20,511	88,826	109,337	R/S
Skagit	438	6,528	6,966	Fry based
Stillaguamish	367	5,614	5,981	Fry based
Snohomish	15,255	5,280	20,535	Fry based
Central Sound	40,527	101,312	141,839	R/S
South Sound	25,798	265,559	291,357	R/S
Hood Canal	336,156	156,736	492,892	R/S
Strait of Juan de Fuca	373	1,688	2,061	R/S-Ocean indicators adjusted
Puget Sound Total	439,425	631,543	1,070,968	

CHUM - WINTER				FORECAST
	HATCHERY	WILD	TOTAL	METHOD
Puget Sound				
South Sound	13,594	23,102	36,696	R/S Regression, perform adj.
Puget Sound Total	13,594	23,102	36,696	

CHUM - FALL				FORECAST
	HATCHERY	WILD	TOTAL	METHOD
Coastal				
Grays Harbor	1,200	30,100	31,300	R/S-brood perform adjustment
Willapa	1,273	56,453	57,726	R/S-brood perform adjustment
Coastal Total	2,473	86,553	89,026	

<u>PINK</u>				FORECAST
	HATCHERY	WILD	TOTAL	METHOD
Puget Sound				
Nooksack	19	96,199	96,218	Fry based
Skagit		85,600	85,600	Fry based
Stillaguamish		40,205	40,205	Fry based
Snohomish		171,632	171,632	Fry based
Green		118,689	118,689	Fry Based
Puyallup		382,301	382,301	Fry Based
Nisqually		21,463	21,463	Fry Based
South Sound Misc.		1,319	1,319	R/S
Hood Canal	3,034	226,406	229,440	Fry and R/S Avg
Strait of Juan de Fuca		3,655	3,655	R/S-Ocean indicators adjusted
Puget Sound Total	3,053	1,147,469	1,150,522	

Puget Sound Total			124,292	
Lake Washington	14,673	62,619	77,292	Sibling relationships
Baker River*		47,000	47,000	Avg. smolt/adult return rates
Puget Sound				
	HATCHERY	WILD	TOTAL	METHOD
SOCKEYE				FORECAST

* Forecast contains hatchery and wild production

SOCKEYE				FORECAST
	HATCHERY	WILD	TOTAL	METHOD
Columbia River				
Wenatchee River		54,200	54,200	Adult-cohort relationships
Okanogan River		192,100	192,100	Adult-cohort relationships
Columbia River Total		246,300	246,300	

Fraser River Forecasts	rom Fisheries and Oceans Cana	<u>ida)</u>
Sockeye Salmon Pink Salmon	4,432,000	

Recreational Discussion – 2/28/2017

Outline of Presentation

- Salmon Management Framework
 - North of Falcon
- Issues List
- Public Comment

North of Falcon Process

- 1. Forecast the abundance of each stock.
- 2. Determine if there is a harvestable surplus.
- 3. Propose fisheries predict what we will catch.
- 4. Model fisheries to determine which stocks are of conservation concern, constraining fisheries.
- 5. Negotiate with tribes and other states for fair sharing of catch and stocks that are constraining.
- 6. Final agreed-to State and Tribal salmon fisheries (ocean, Puget Sound) are described in the "List of Agreed Fisheries" document.

Puget Sound Chinook Forecast Comparisons

Basin		Wild	
DaSIII	2016	2017	Comparison
Hoko	2,032	606	0.30
Dungeness	88	77	0.88
Elwha	175	153	0.87
Nooksack springs	340	225	0.66
Skagit springs	1,994	2,785	1.40
Skagit summer/falls	15,132	15,837	1.05
Stillaguamish	299	438	1.46
Snohomish	3,339	3,412	1.02
Lake Washington	1,135	948	0.84
Green	2,228	2,374	1.07
Puyallup	353	945	2.68
White River springs	811	593	0.73
Nisqually	762	478	0.63
Skokomish	1,835	1,956	1.07
Mid Hood Canal	320	326	1.02
Total (others included)	34,158	31,330	0.92

Puget Sound Coho Forecast Comparisons

Basin		Wild				
Basin	2016	2017	Comparison			
Dungeness	116	918	7.91			
Elwha	153	359	2.35			
other Strait	4,427	13,058	2.95			
Nooksack/Samish	8,987	6,291	0.70			
Skagit	8,912	11,160	1.25			
Stillaguamish	2,770	7,622	2.75			
Snohomish	16,740	107,325	6.41			
Lake Washington	912	2,160	2.37			
Green	958	3,852	4.02			
Puyallup	1,576	7,560	4.80			
Nisqually	1,486	3,290	2.21			
Deschutes	48	67	1.40			
Skokomish	3,959	19,705	4.98			
other Hood Canal	31,363	74,130	2.36			
Total (others included)	52,037	267,745	5.15			
Coho Forecast vs Returns

<u>Year</u>	<u>Forecast</u>	<u>Run Size</u>	<u>Comparison</u>
2012	732,363	1,002,557	1.37
2013	882,134	836,494	0.95
2014	872,848	467,779	0.54
2015	891,854	215,081	0.24
2016*	225,403	~390k	1.74
Avg.	720,920	583,019	0.81
2017	559,045		-
*prelimin	ary estimate		

Puget Sound Pink Forecast Comparisons

Basin				
		2015	2017	Comparison
Nooksack		281,979	96,218	0.34
Skagit		603,385	85,600	0.14
Stillaguamish		210,062	40,205	0.19
Snohomish		1,625,306	171,632	0.11
Green		626,102	118,689	0.19
Puyallup		837,967	382,301	0.46
Nisqually		979,298	21,463	0.02
Hood Canal		312,576	229,440	0.73
Strait of Juan de Fuca		1,299,356	3,655	0.002
Total (others included)		6,778,025	1,150,522	0.17
2015 Pink	Forec	ast: 6.8 mil	Return: 3.7 mil	0.53

Recreational Issues

- Timely agreement
- New Chinook FRAM base period
- In-season action (primarily winter seasons)
- Meaningful angler opportunity
 - •Coho
 - Pink
 - Catch-and-release seasons
- Skokomish

Public Comment

On-line commenting – March-April http://wdfw.wa.gov/fishing/northfalcon/

Puget Sound Sport Fishing Advisory Group http://wdfw.wa.gov/about/advisory/pssfag/

Public Meetings March 15 – Mill Creek WDFW, 6 pm March 16 – Sequim Trinity Church, 7 pm March 17 – North of Falcon #1, Olympia, 9 am April 4 – North of Falcon #2, Lynnwood Embassy Suites, 9:30 am April 7-11 – PFMC #2, Double Tree Sacramento