Washington State Status Report for the Fisher

Washington State Status Report

for the

Fisher

by

Jeffrey C. Lewis and Derek W. Stinson

Washington Department of Fish and Wildlife Wildlife Management Program 600 Capitol Way North Olympia, Washington 98501-1091

The Washington Department of Fish and Wildlife maintains a list of endangered, threatened and sensitive species (Washington Administrative Codes 232-12-014 and 232-12-011, Appendix C). In 1990, the Washington Fish and Wildlife Commission adopted listing procedures developed by a group of citizens, interest groups, and state and federal agencies (Washington Administrative Code 232-12-297, Appendix C). The procedures include how species listing will be initiated, criteria for listing and delisting, public review and recovery and management of listed species.

The first step in the process is to develop a preliminary species status report. The report includes a review of information relevant to the species' status in Washington and addresses factors affecting its status including, but not limited to: historic, current, and future species population trends, natural history including ecological relationships, historic and current habitat trends, population demographics and their relationship to long term sustainability, and historic and current species management activities.

The procedures then provide for a 90-day public review opportunity for interested parties to submit new scientific data relevant to the status report, classification recommendation, and any State Environmental Policy Act findings. During the 90-day review period, the Department holds one public meeting in each of its administrative regions. At the close of the comment period, the Department completes the Final Status Report and Listing Recommendation for presentation to the Washington Fish and Wildlife Commission. The Final Report and Recommendation are then released 30 days prior to the Commission presentation for public review.

This is the Final Status Report for the fisher. Submit written comments on this report by 1 October 1998 to: Endangered Species Program Manager, Washington Department of Fish and Wildlife, 600 Capitol Way N, Olympia, WA 98501-1091. The Department will present the results of this status review to the Fish and Wildlife Commission for action at the October 27, 1998 meeting.

This report should be cited as:

Lewis, J. C, and D. W. Stinson. 1998. Washington State status report for the fisher. Wash. Dept. Fish and Wildl., Olympia. 64 pp.

TABLE OF CONTENTS

ACKNOWLEDGMENTS vi
EXECUTIVE SUMMARY vii
TAXONOMY1
DESCRIPTION
GEOGRAPHICAL DISTRIBUTION
North America
Washington
Early records
NATURAL HISTORY
Behavioral Characteristics
Home Range and Territoriality7
Activity Patterns, Movement, and Dispersal
Diet and Foraging
HABITAT REQUIREMENTS
General
Forest types
Late-successional forest association
Effects of forest management
Habitat models
Fishers and Snow
Dens and Rest Sites
Natal dens
Maternal dens
Rest sites
POPULATION DYNAMICS
Reproduction
Population Cycle
Mortality and Survival
Population Density
POPULATION STATUS
Past
Present
Incidental captures

Sighting reports
Systematic surveys 25 Future 26
HABITAT STATUS
Past
Present
Future
CONSERVATION STATUS
Legal Status
Management Activities
FACTORS AFFECTING CONTINUED EXISTENCE
Incidental Mortalities
Trapping
Vehicle collisions
Habitat Loss, Alteration, and Fragmentation
Forest management
Fire, wind, and vulcanism
Forest Landscape Planning
Genetic, Demographic, and Environmental Risks to Small Populations
CONCLUSIONS AND RECOMMENDATIONS
REFERENCES CITED
PERSONAL COMMUNICATIONS
Appendix A. Fisher specimens collected in Washington
Appendix B. Sighting, tracks, and trapping reports of fishers in Washington
Appendix C. Washington Administrative Codes

LIST OF TABLES AND FIGURES

Table 1. Estimated home range sizes (in km ²) of fishers from seven studies in western North
America
Table 2. Fisher habitat use in radio-telemetry studies in western North America 13
Table 3. Fisher use of tree and ground rest sites in western North America 17
Cable 4. Number of fisher obtained in trade at Hudson's Bay Company posts 21
Table 5. Recent forest carnivore camera surveys 24
Table 6. Area (ha) of old-growth forests in Washington on reserved and unreserved lands by
ownership, 1992
Table 7. Fisher reintroductions in North America 32

Figure 1.	Historical and current range of the fisher in North America	3
Figure 2.	Probable historical distribution (circa 1800) of the fisher in Washington	5
Figure 3.	Fisher records in Washington, 1980-1997	5
Figure 4.	Percent frequency of occurrence of food items in the fisher diet from six studies in	
W	estern North America)
Figure 5.	Locations of camera and track-plate stations in Washington, 1990-1997 25	5

ACKNOWLEDGMENTS

Keith Aubry and Larry Jones of the USDA Forest Service generously provided data. Keith Aubry, Jeff Jones, Bill Zielinski, William Krohn, B. J. Verts, and Kim Heinemeyer provided critical reviews of drafts of the document. Wayne Melquist, Idaho Fish and Game, Larry Cooper, Oregon Department of Fish & Wildlife, and Brian Giddings, Montana Fish, Wildlife & Parks provided trapping data. Buck Adamire and George Sovie of the Washington State Trappers Association provided information on historical and recent fisher captures in Washington. Rich Lechleitner, National Park Service, provided sighting reports. Fred Stangle, Midwestern State University, contacted Walter Dalquest about an old specimen record. Todd Fuller, University of Massachusetts, provided copies of Eric York's thesis and a submitted manuscript. Richard Johnson, Washington State University, provided information about specimens. Larry Sutton tried to track down an old fisher pelt. Diane Mitchell, Natural Resource Building Librarian, and staff at the Washington State Library helped obtain some of the literature. The Hudson's Bay Company Archives, Provincial Archives of Manitoba, Winnepeg, provided HBC records.

Washington Department of Fish and Wildlife staff assisted extensively in this project. Mary Goble compiled information for some tables; Jason Goldstein entered much of the carnivore survey data; Tom Owens and Julie Stofel compiled carnivore survey data, mapped carnivore survey stations (Figs. 2, 3, and 5), calculated survey effort by WDFW, and provided fisher observations from the Natural Heritage Database; Peggy Ushakoff created the cover illustration and Figure 1; Harriet Allen and Steve Pozzanghera provided guidance, information, and critical reviews; Scott Richardson, David Hays, Kelly McAllister, Julie Stofel, Steve Zender, Chuck Gibilisco, Tim Quinn, and Rich Fredrickson provided information and reviews of drafts. Tim Hood provided information about an old fisher record.

The Department appreciates the contributions of numerous interested individuals who provided details of fisher sightings over the years.

EXECUTIVE SUMMARY

Fishers historically occurred throughout much of the forested areas of Washington, though they were not particularly abundant. The fisher was over-trapped in the 19th and early 20th centuries. Trapping, predator and pest control programs, and loss and alteration of habitat combined to push the fisher to near extirpation. Despite protection from legal harvest for 64 years, the fisher has not recovered. The fisher population may have been kept from recovering by a combination of factors. These factors likely include: a reduction in quality and quantity of habitat due to development and logging; past predator and pest control programs; low inherent reproductive capacity of the species; and demographic and genetic effects of small population size.

Fisher biology is characterized by low population density and a low reproductive rate. They have large home ranges and generally avoid large openings, which suggests that viable populations would require large areas of relatively contiguous habitat. Throughout their range, fishers are generally associated with late-successional coniferous and mixed coniferous-deciduous forest. In western Washington, fishers may have been restricted by frequent soft snows or deep snow packs to elevations below 1800 m. Forests with high canopy closure, multiple canopies, shrubs, and that support a diverse prey base are most used. Large diameter trees, large snags, tree cavities, and logs are most often used for den and rest sites, and are an important component of suitable habitat.

Currently, the fisher is very rare in Washington. Infrequent sighting reports and incidental captures indicate that a small number may still be present. However, despite extensive surveys, no one has been able to confirm the existence of a population in the state. The lack of detections of fishers given the extensive carnivore surveys conducted since 1990, an average of less than four fisher sightings per year since 1980, and few incidental captures by trappers, all indicate that fishers are very rare in Washington and could become completely extirpated. We believe that any remaining fishers in Washington are unlikely to represent a viable population, and without a recovery program that includes reintroductions, the species is likely to be extirpated from the state.

For these reasons, the Department recommends that the fisher be listed as an endangered species in the state of Washington.

TAXONOMY

The fisher (*Martes pennanti*) is a member of the order Carnivora, family Mustelidae, and subfamily Mustelinae. Johann Erxleben first described the fisher in 1777 based on an account made by Welsh naturalist Thomas Pennant in 1771 and an earlier account by Buffon in 1765 (Powell 1981, 1993, Douglas and Strickland 1987). Erxleben (1777 cited in Powell 1981, 1993) referred to the species as *Mustela pennanti*, after Thomas Pennant. In the late 1800s, Allen, Baird, Coues, Rhoads, and Smith independently agreed upon the binomial *Martes pennanti* (Hagmeier 1959, Powell 1981). Three subspecies have been recognized: *M. p. pennanti* (Erxleben) of northeastern and northcentral North America; *M. p. columbiana* (Goldman) of central and western Canada and the northern Rocky Mountains of the United States; and *M. p. pacifica* (Rhoads) of southwestern British Columbia, Washington, Oregon, and California (Goldman 1935, Hall 1981). The validity of these three subspecies has been questioned (Grinnell et al. 1937, Hagmeier 1959, Coulter 1966). The genetic relations of fishers throughout their range are currently being investigated and may determine the validity of subspecific designations.

Although fishers will eat fish, the name "fisher" is misleading. It may have resulted from the resemblance of this species to the European polecat (*Mustela putorius*), the pelts of which are referred to as "fichet" in France (Powell 1993). Alternatively, the name may have originated from trappers who caught this species while using fish as bait, and the fisher's habit of stealing fish from winter stores (Coues 1877). Black cat, fisher cat, pekan, pequam, wejack, and woods-otter are other common names given to this species (Douglas and Strickland 1987, Powell 1993).

DESCRIPTION

The fisher is a large, stocky, dark brown member of the weasel family, and the largest member of the genus *Martes*. It is about the size of a large house cat. It has a long, bushy tail, short rounded ears, short legs, and a low-to-the-ground appearance. It is commonly confused with the smaller American marten (*M. americana*), which is lighter in color (cinnamon to milk chocolate color) has an irregular cream to bright amber throat patch, and has more pointed ears and a proportionately shorter tail. The fisher's pelage is dark brown on the snout, belly, legs, rump, and tail. It is often a lighter, grizzled brown (cinnamon to milk-chocolate color) on the top of its head, neck and shoulders. Fishers often have white markings on their chest, underarm region and around their genitals (Powell 1993). Although the extent of these markings stays the same on individual fishers, the color is known to vary from white to amber-yellow and back again over the period of a year. Females have finer, silkier fur than males, making females' pelts more valuable than those of males (Douglas and Strickland 1987). Fishers have a single molt in late summer and early fall, and shedding starts in late spring (Powell 1993). The molting of hair on the tail can be extensive, giving the appearance of a "rat-tail" in some individuals. Fishers exhibit dramatic sexual dimorphism. Females usually weigh 2.0 to 2.5 kg (4.4-5.5 lb) and

measure 70 to 95 cm (28-37 in) in total length; males usually weigh 3.5 to 5.5 kg (7.7-12.1 lb) and measure 90-120 cm (36-47 in) total length (Powell 1993). The tail is slightly more than one third of the total body length in both sexes.

The fisher has partially retractable claws that allow it to climb and maneuver in trees; it can descend trees in a head-first position (Grinnell et al. 1937, Powell 1980, 1993). It has large feet with five toes, and walks using its whole foot (plantigrade posture; Powell 1993) or just its toes (digitigrade posture; Strickland et al. 1982). The fisher runs with the undulating or bounding gait typical of weasels.

The fisher's dentition consists of 3 incisors, 1 canine, 4 premolars, and 1 molar bilaterally in the upper jaw; and 3 incisors, 1 canine, 4 premolars and 2 molars bilaterally in the lower jaw (Powell 1993). Males have a baculum, which becomes heavier and changes shape with age, and its characteristics can be used to distinguish juveniles from adults (Strickland et al. 1982, Frost et al. 1997). The skull of both males and females has a sagittal crest which is much larger on adult males (Strickland et al. 1982).

GEOGRAPHICAL DISTRIBUTION

North America

The fisher, found only in northern North America, historically occurred as far south as the Appalachians of Tennessee and North Carolina (Fig. 1; Hagmeier 1956, Gibilisco 1994). Prehistoric remains have been found as far south as Georgia, Arkansas, and possibly Alabama (Graham and Graham 1994). The present range includes much of the forested region of Canada, New England, northern New York, northern Minnesota, northern Wisconsin, and the Upper Peninsula of Michigan. In the western United States, continuous peninsular extensions occurred historically from Canada south through the Rocky Mountains to Central Idaho, and south through the Cascades, Coast Ranges, and the Sierra Nevada (Gibilisco 1994). The fisher's range in the western states is now more fragmented and discontinuous than it was historically (Zielinski et al. 1995a).

The fisher's range was reduced dramatically in the 1800s and early 1900s through overtrapping; alterations of forested habitats by logging, fire, and farming; and predator and pest control (Douglas and Strickland 1987, Powell 1993, Powell and Zielinski 1994). The combination of logging and trapping probably had the greatest impacts (Powell 1993). Fisher pelts have always been valuable, and trapping pressure was intense. Fires, particularly in the northern Rockies, resulted in the loss of well over 1 million acres of potential fisher habitat (Pyne 1982). Logging removed, altered, or fragmented most of the older forests used by the fisher (Powell 1993). Consequently, in the 1920s, 1930s and 1940s, many states and provinces closed fisher trapping seasons to protect remaining populations and allow the fisher to recover (Powell 1993).

Figure 1. Historical and current range of the fisher in North America (modified from Gibilisco 1994). The current range in Washington is unknown.

Legal protection and the regrowth of forests after 19th century farm abandonment allowed some populations in the Northeast to recover. Fishers were reintroduced in areas where trapping closures failed to allow fisher populations to recover (Berg 1982, Powell 1993, Strickland et al. 1982).

The present distribution in California, where fishers have not been reintroduced, includes populations in the southern Sierra Nevada, and a population in northwestern California that extends into the southwestern corner of Oregon (Zielinski et al. 1995a). Fishers also now occur in the southern Oregon Cascades and in the Clearwater region of northern Idaho (Aubry et al. 1996a, Jones and Garton 1994, Heinemeyer 1995). Fishers presently occur throughout much of British Columbia (B.C. Minist. of Env. Lands, Parks, unpubl. data).

Washington

Early records. Archaeological deposits from sites in King, Okanogan, and Ferry counties suggest that the fisher has been present in Washington for at least 4000 years (Lyman 1995, R.L. Lyman, pers. comm.). Based on habitat, the historic range of fishers in Washington probably included all the wet and mesic forest habitats at low to mid-elevations (Fig. 2). The distribution of trapping reports and fisher specimens collected in Washington confirms that fishers occurred throughout the Cascades, Olympic Peninsula, and probably southwestern and northeastern Washington (Suckley and Cooper 1860, Taylor and Shaw 1927, Scheffer 1938, 1957,1995; Booth 1947, Dalquest 1948, B. Adamire, pers. comm; Appendix A, B). Authors seem to disagree about the presence of fisher in southwestern Washington, the Blue Mountains, and northeastern Washington, due to the scarcity of specimens from these areas (Taylor and Shaw 1929, Booth 1947, Dalquest 1948, Johnson and Cassidy 1997). Dalquest's (1948) map excluded all these areas, but he states that "a few may occur in northeastern Washington, the Blue Mountains, and the Willapa Hills."

The Blue Mountains were included in fisher range by Booth (1947), but excluded by Taylor and Shaw (1929), and Johnson and Cassidy (1997). We included the Blue Mountains based on habitat, the mention of fisher in the Blues by Suckley and Cooper (1860:92,114), and the collection of two specimens in the Blue Mountains in Oregon (Bailey 1936). Hudson's Bay Company fur returns for the years 1836-1852 list 284 fishers from Fort Nez Perces at Walla Walla (Hudson's Bay Company Archives, Winnepeg). These fishers were probably trapped in the Blues in Washington and Oregon and the Wallowa Mountains in northeastern Oregon.

We included northeastern Washington in historical fisher range based on historical trapping records, habitat, and recent sightings (Hudson's Bay Company Archives, Winnepeg, Aubry and Houston 1992, Johnson and Cassidy 1997). Trapping records list a large number of fishers from Fort Colville, which was near Kettle Falls. However, Fort Colville received furs from a part of southeastern British Columbia, northern Idaho, and western Montana, as well as northeastern Washington (Mackie 1997:250).

For southwestern Washington, Booth (1947) listed a specimen from Bay Center, Pacific County. Johnson and Cassidy (1997) excluded southwestern Washington because the Bay Center specimen listed by Booth (1947) is not among the other specimens of the Biological Survey Collection at the Smithsonian. The specimen either has been lost or never existed (R. Johnson, pers. comm.). We include southwestern Washington based on habitat, historical accounts of single fishers being trapped near the Palix River, Pacific County in 1903, 1910, and 1913 (B. Adamire, pers. comm.), and an account of three being trapped near Seaview in 1930 (Scheffer 1957).

Our map includes Whidbey, Vashon, Bainbridge, and Camano islands, but it is unknown if fisher were ever present on these islands. A bone found during excavation of a village site on Whidbey

Figure 2. Probable historical distribution (circa 1800) of the fisher in Washington based on specimens (numbers indicated by county), trapping records, and forest zones associated with fisher records (Aubry and Houston 1992) (Forest zones [Cassidy 1997] shaded include: Western Hemlock types, Douglas-fir types, Grand Fir, Cowlitz River (zone), Willamette Valley (zone), Sitka Spruce, Interior Redcedar, Silver Fir, and Subalpine Fir).

Island is the only known fisher record, and it may have been caught elsewhere (Bryan 1963). We excluded San Juan County, though Booth (1947) listed a specimen in the personal collection of Walter Dalquest from Blakely Island. However, Walter Dalquest has no recollection of such a specimen and did not believe fisher were ever found on the islands (F. Stangle, pers. comm.). Therefore, we disregarded that record, as did Dalquest (1948), and Johnson and Cassidy (1997). Scheffer (1938, 1957, 1995) reported that fishers were trapped in low elevation forests of the Olympic Peninsula in the early 1900s, but by the 1930s the fisher was "...concentrated chiefly in the wild and roadless portions of the Olympic Mountains, but has been reported along the Cascades and as far east as the Okanogan Valley" (1938:8). Based on all the records and reports with good location information, Aubry and Houston (1992) reported that fisher on the west side of the Cascades were primarily (87% of records) found below 1000 m in elevation. They attributed the complete absence of fisher records above 1800 m west of the Cascade crest to the deep snow pack (*see page* 15 Fishers and Snow).

Figure 3. Fisher records in Washington, 1980-1997. Circles represent records in Aubry and Houston (1992) with reliability ratings of 1-4 (see footnote, Appendix B). Triangles represent more recent records on file at WDFW.

Recent records. Aubry and Houston (1992) compiled fisher records and sighting reports from 1955-1991 for Washington. Fisher sightings and track reports must be interpreted with caution, because other species, including marten and river otter (*Lutra canadensis*), can be mistaken for fisher, and large marten tracks are extremely similar to female fisher tracks (Zielinski and Truex 1995). Aubry and Houston (1992) carefully evaluated all fisher records and reports and assigned them to categories of reliability. Their summary suggests that the fisher is no longer found in the Blue Mountains, southern Coast Range, southernmost Cascades, the Kitsap Peninsula, and the eastern edge of Puget Sound (Aubry and Houston 1992).

Approximately 16 sighting reports have been filed since Aubry and Houston (1992) compiled records (Appendix B). These have not been categorized as to reliability, but nearly all occurred in the areas with other recent reports (Fig. 3) and add little information about fisher distribution besides what was already reported. The only verifiable records (specimens or photos) in recent years include: a female found dead in a trap near Orting, Pierce County, in 1990; a fisher trapped, photographed, and released on Fort Lewis, Pierce County in 1992; and a radio-collared fisher from Montana that was recovered in Stevens County in 1994. Extensive surveys by WDFW and the U. S. Forest Service have failed to find a fisher population, or even confirm the presence of a

fisher in areas where reports are concentrated (see discussion under Population Status). Infrequent sightings and incidental captures indicate that a small number may remain that have gone undetected.

NATURAL HISTORY

Behavioral Characteristics

Fishers are solitary except when rearing young (done only by the female), breeding, and fighting. Aggression and fighting between males may occur during the breeding season (generally March-April), when they make extra-territorial movements in search of receptive females (Douglas and Strickland 1987). Male-female interactions other than breeding and detecting scent marks, are probably incidental to other activities. Defending territories using confrontation may be relatively rare (Powell 1993).

Scent-marking with urine, feces, and glandular secretions on logs, stumps, and snow piles is used presumably to delineate territories. Plantar glands on the hind feet become larger in the breeding season and may deposit scent during normal locomotion (Frost et al. 1997). Fishers have been observed marking deer carcasses by dragging their abdomens over the carcass and marking with urine (Pittaway 1984). Scent-marking rest sites with feces and urine is common as well (Powell 1993). An abdominal scent gland is present in American martens and wolverines (*Gulo gulo*), but has not been described for fishers (Pittaway 1984).

Fishers have had a reputation of being secretive. They are seldom seen even where abundant, suggesting that they generally avoid humans (Douglas and Strickland 1987, Powell 1993:1, 201). However, they sometimes use habitat near low-density housing, farms, and roads, and den under unoccupied structures (Pittaway 1978, Johnson and Todd 1985, Arthur et al. 1989a, Jones 1991). Powell et al. (1997) reported fisher maternal dens near active roads and small logging operations, and a natal den was recently found near an occuppied dwelling (W. Krohn, pers. comm.). Fishers have also been known to take suet and other foods at bird feeders (Pittaway 1978, Jones 1991). Fishers seem to be adapting to living near humans, because they now inhabit suburbs in New England (W. Krohn, pers. comm.).

Home Range and Territoriality

Home range size of fishers varies widely for individuals and by region (Table 1). Powell and Zielinski (1994) state that there is no clear pattern in home range sizes, although the largest have been recorded in western states and provinces. Typically, male home ranges (average 40-50 km²; 15.4-19.3 mi²) are two to three times the size of female home ranges (15-20 km²; 5.8-7.7 mi²). Sex-specific differences in home range size may be a result of differential resource use (i.e.,

Location	Male			Female	9			
(Reference)	mean	s.d.	n	mean	s.d.	n	Method and comments	
California (Buck 1982)	23	12	4	6.8		2	Convex polygon; adults & juv with >20 locations; male- breeding season; female-annual.	
California (Self and Kerns 1992)	16	6	2	-		-	Convex polygon	
California (Zielinski et al. 1997a)	52	34	4	8.3	3.2	9	Adaptive kernal, 95% contours; preliminary data.	
California (Dark 1997)	53.9	50.6	4	53.5	34	2	Adaptive kernal, 95%; animals with >15 locations.	
Idaho (Jones 1991)	79	35	6	32	23	4	90% harmonic mean	
British Columbia (Weir 1995)	46.5		1	26.4	9.2	5	Adaptive kernal 90% contours Annual range	
	122	66.5	3	33	10.7	8	Adaptive kernal 90% contours Summer range	
	73.9		1	25	2.6	6	Adaptive kernal 90% contours Winter range	
Oregon (K. Aubry, pers. comm.)	40		1	26.4	3.5	3	Convex polygon, 100% contours; preliminary data.	

Table 1. Estimated home range sizes (in km²) of fishers from seven studies in western North America.

males seek access to females, while females seek access to food)(Arthur et al. 1989a, Powell and Zielinski 1994). The home ranges of males often overlap more than one females's home range. There appears to be very little intra-sexual overlap of adult home ranges, with the exception of males during the breeding season (Powell 1993). Data on home range size that includes breeding season data often include extra-territorial excursions by males (Powell and Zielinski 1994).

Activity Patterns, Movement, and Dispersal

Fishers may be active day and night, but appear most active around sunrise and sunset. They often rest during the afternoon (Kelly 1977, Arthur and Krohn 1991, Kohn et al. 1993, Powell 1993). They may be more active when they are hungry and when their prey is more available (Powell 1993). Powell (1993) reported that fishers generally have 1-3 activity periods per day lasting 2-5 hours each. They are also more active during summer than in winter (Kelly 1977, Arthur and Krohn 1991). Males and females have generally similar activity patterns (Arthur and Krohn 1991). Denning females are more active than females without young, especially during the day (Arthur and Krohn 1991, Paragi et al. 1994).

Based on snow tracking, fishers in Michigan typically traveled about 5 km each day (Powell 1993). Daily movements during summer seem to be somewhat less than in winter (Powell and Zielinski 1994). In Wisconsin, Kohn et al. (1993) found average minimum daily movements of 2.25 and 1.25 km (1.4 and 0.8 mi) typical for males and females, respectively (straight line distance using telemetry). Fishers occasionally make long-distance movements in short periods, especially males during the breeding season. Reintroduced fishers typically travel >50 km after being released (Weckworth and Wright 1968, Pack and Cromer 1981, Roy 1991, Heinemeyer and Jones 1994, Proulx et al. 1994).

Fishers are primarily terrestrial, but climb trees to reach den and resting sites or to reach prey. Fishers can travel from tree to tree, but their arboreal activities have been exaggerated in the popular literature (Grinnell et al. 1937, Powell 1980). Female fishers, due to their smaller size, seem to be more adept at climbing (Powell 1977, Pittaway 1978). Kelly (1977) and Coulter (1966) reported that large rivers seem to be a barrier to movements and dispersal, but Weir (1995) reported that fishers in British Columbia crossed a large river on several occasions. In Massachusetts, two fishers crossed and recrossed a large river, but may have used bridges (York 1996). Seton (1929), and deVos (1952, cited in Heinemeyer and Jones 1994) indicate that fishers do not hesitate to swim when it is advantageous. In Oregon, unpaved logging roads do not seem to impede fisher movements, but wide paved roads do. Fishers there do not maintain home ranges on both sides of paved roads (K. Aubry, pers. comm.). In Massachusetts, a fisher that maintained a home range on both sides of a highway was killed by a vehicle (York 1996).

In most mammals, males disperse from their mother's home range, but females remain nearby (Greenwood 1980). In fishers, males and females seem to disperse similar distances, but females may disperse later (Paragi 1990, Arthur et al. 1993). Juveniles dispersed about 10-16 km in Maine (Arthur et al. 1993), and 33 km in Massachusetts (York 1996). In Idaho, 2 1-year-old males moved 26 and 42 km before establishing home ranges (Jones 1991).

Diet and Foraging

The fisher's diet generally consists of snowshoe hares (*Lepus americanus*), small mammals, squirrels, porcupines (*Erethizon dorsatum*), birds, ungulate carrion, and plant material (Fig. 4). Insects, reptiles, amphibians, and fungi are also occasionally eaten (Grenfell and Fasenfest 1979, Kuehn 1989, Zielinski et al. 1997a). Fishers occasionally eat a variety of fruits and seeds; Washington trappers have reported that summer scat contained salal berries (*Gaultheria shallon*) and huckleberries (*Vaccinium* spp.) (Scheffer 1957). Other types of vegetation often appear on fisher diet lists but their presence may be the result of fishers ingesting the gut contents of prey or while trying to escape from a trap (Jones 1991). The occurrence of aquatic mammals in the fisher's diet may also be influenced by the use of beaver and muskrat as bait by trappers (Kuehn 1989). In Idaho, Jones (1991) found that snowshoe hares, ungulate carrion, and small mammals were the most frequently identified remains in scats and digestive tracts. Similarly, in Montana, Roy (1991) found that snowshoe hares composed the bulk of the diet, and small mammals, porcupines, mustelids, and black-tailed deer (*Odocoileus hemionus*) composed the balance.

Figure 4. Percent frequency of occurrence of food items in the fisher diet from six studies in western North America.

Key: percent range	<5%	5-9 %	10-19 %	20-48%	>49%	
Symbol	*	$\Diamond \Diamond$	***			

Location	Idaho	Idaho	Montana	BC ^a	California	Manitoba
Study	Jones 1991 (7 g.i.) ^ь	Jones 1991 (18 scat)	Roy 1991 (80 scat)	Weir 1995 (261 g.i.)	Grenfell & Fasenfest 1979(8g.i.)	Raine 1987 (159 scat)
Snowshoe hare						
Porcupine		$\diamond \diamond$	$\diamond \diamond$	***		
Deer (carrion)	***	***	*	$\diamond\diamond$	••••	
Moose/elk (carrion)	***	***		***		
Unident. Ungulate	••••	••••				
Voles, red-backed	••••	$\diamond \diamond$		***		*
Unidentified		••••	*	$\diamond\diamond$		*
Peromyscus spp.	***			***		
Misc./unident. rodent			$\diamond \diamond$		***	
Shrews				***		
Moles					***	
Squirrels, red	***					*
Ground		$\diamond \diamond$				
Flying				$\diamond\diamond$		
Chipmunks		$\diamond \diamond$	*			
Marmot/ Woodchuck		$\diamond\diamond$				*
Rabbit					***	
Muskrat ^c						*
Woodrat			$\diamond \diamond$		*	
Fisher				***		
Marten				$\diamond\diamond$		
Weasels		$\diamond \diamond$		$\diamond \diamond$		
unident./other			$\diamond \diamond$			
Domestic cat		$\diamond \diamond$				
Misc./unident.		$\diamond \diamond$				
Birds/ Galliformes				$\diamond \diamond$	$\diamond \diamond$	$\Diamond \Diamond$
other/unident.	***	***				*
eggs						$\Diamond \Diamond$
Snake						*
Arthropods		***				*
Snail		$\diamond \diamond$				
Fruits and seeds		***		*		*
Fungi (false truffles) d						

^a BC = British Columbia. ^bg.i. = gastro-intestinal tract. ^cBeaver and other meat that appeared to be trap bait was excluded from the figure. ^dFungi may have been from the gut of prey. Ungulate meat is nearly always obtained as carrion, but fishers do attack adult deer on rare occasions (Seton 1929, Weir 1995).

In southwestern Oregon, prey remains at den and rest sites included Steller's jay (*Cyanocitta stelleri*), northern flicker (*Colaptes auratus*), pileated woodpecker (*Dryocopus pileatus*), hairy woodpecker (*Picoides villosus*), ruffed grouse (*Bonasa umbellus*), deer fawn, snowshoe hare, California ground squirrel (*Spermophilus beecheyi*), northern flying squirrel (*Glaucomys sabrinus*), Douglas squirrel (*Tamiasciurus douglasi*), and porcupine (Aubry et al. 1997). Porcupines were detected in the diet during winter, but not during summer when less intimidating prey may be more readily available (K. Aubry, pers. comm.).

Sexual dimorphism in animals often results in different diets and is hypothesized to be an adaptation to avoid food competition between the sexes (Selander 1966, Erlinge 1979). Most investigators have failed to find a difference in diet between male and female fishers although they differ dramatically in size (Powell 1993, Giuliano et al. 1989). However, Weir (1995) found that females consumed small mammals and squirrels significantly more often than males, and that males consumed weasels, martens, and fishers (likely scavenged from traps and possibly preyed upon) more often than females. The greater frequency of males with porcupine quills in their tissues and feces suggests that males prey on porcupines more frequently than females (Douglas and Strickland 1987, Arthur et al. 1989b, Weir 1995, Aubry et al. 1997).

Fishers are opportunistic hunters that use two different hunting techniques. They employ a "zigzagging" movement between sites with suitable cover in search of snowshoe hares (and other small and mid-sized mammals and birds), and a straight-line movement between suitable den trees when seeking porcupines (Powell 1993). They also occasionally use logs, snowbanks, and small ridges as vantage points while hunting hares (Johnson and Todd 1985). Fishers are very quick, and once prey is flushed from cover, it is overtaken rapidly. Most prey species, with the exception of the porcupine, are killed with a bite to the back of the neck and head. Fishers kill porcupines by making repeated bites to their thinly quilled face (Powell 1993). To catch porcupines, fishers often ascend trees and descend head-first forcing an ascending porcupine back down to the ground where it can be killed and eaten (Powell 1993).

HABITAT REQUIREMENTS

General

Fishers use forests with a high percentage of canopy closure, abundant large woody debris, large snags and cavity trees, and understory vegetation (Buck et al. 1983, Arthur et al. 1989b, Jones 1991, Powell 1993, Seglund 1995). Good fisher habitat seems to have a high degree of diversity; multi-aged stands interspersed with small openings and containing wetland or riparian habitats which help support a diverse prey base may be ideal (Banci 1989). Coues (1877) and Seton (1929) noted that fishers seem to prefer forest near swamps, especially swamps in large timber.

Riparian habitats are used extensively by fishers, especially as travel corridors and rest sites (Buck et al. 1983, Jones and Garton 1994, Seglund 1995).

Forest types. Fishers are found in northern coniferous, mixed coniferous-hardwood, and northern hardwood forests (Powell 1993). Fishers generally do not seem to select habitats based upon tree species composition. Roy (1991) reported that fishers avoided subalpine fir (Abies lasiocarpa) and used mixed-conifer and cedar-hemlock stands, but this may have resulted from selection for lower elevations. In Washington, Aubry and Houston (1992) found that fisher records were from western hemlock (Tsuga heterophylla), Sitka spruce (Picea sitchensis), and Pacific silver fir (Abies amabilis) forest zones west of the Cascade crest, and from subalpine fir and grand fir/Douglas-fir (Abies grandis/Pseudotsuga menziesii) zones east of the crest. In winter, conifer forests are selected more often as foraging habitats, but mixed and hardwood forests are also used (Arthur et al. 1989, Powell and Zielinski 1994). Fishers tend to forage in coniferous forests when hunting for hares, and seek porcupines in hardwood and mixed forests. Powell (1994) hypothesized that fishers make brief but direct forays into hardwood stands to seek out porcupine dens so that little time is spent in this cover type. Standard use-versus-availability analyses may underestimate the importance of hardwood habitats because though the fisher spends little time there, the porcupines killed there may be an important food source (Powell 1994).

Late-successional forest association. Ruggiero et al. (1994b) used the term "late-successional" to refer to mature and older forests that possess the structure typical of older forests (large trees, logs, and snags, and vertical and horizontal complexity). The importance of late-successional forest to fishers in the west has been the subject of much discussion and needs further study. After reviewing available information, Thomas et al. (1993) listed the fisher as "closely associated" with old-growth forest, and Holthausen et al.(1994) stated that fishers are not dependent on late-successional forest, but require closed- canopy forest with adequate prey populations. In eastern and mid-western forests, fishers are associated with mid-successional and mature second-growth stands of lowland conifers and upland hardwoods with high canopy closure (Arthur et al. 1989b; Powell 1993, 1994).

In western forests, fishers are associated with late-successional conifer forests but also use younger stands, especially as foraging habitat (Table 2; Buck et al. 1983, Jones 1991, Roy 1991, Jones and Garton 1994, Weir 1995). Buskirk and Powell (1994) hypothesized that in meeting the needs of fishers, mid-successional mixed forest of the mid-western and northeastern United States were equivalent to late-successional Douglas-fir in the Pacific Northwest. Roy (1991) did not detect any selection for stand age (seedling through large saw-timber) by fishers introduced into Montana from Minnesota. In Idaho, Jones and Garton (1994) reported that pole-sapling stands were little used, and not used at all in winter. They found that late-successional forests were preferred in summer (90% of observations) when younger stand types (non-forest, pole-sapling, and young) were avoided, but that fishers showed a selection for young forests in winter. They speculated that the winter selection for young stands may have been in response to greater availability or vulnerability of prey in these cover types in winter. They hypothesized that there is a shift away from voles to more squirrels and hares in winter, as observed for marten

Ctore la c		Use of Stand Type				
(Location)	Forest Type	Selected	Avoided			
Buck 1982 (NWCalifornia)	Mixed coniferous	mature closed conifer; multi-species stands; forested riparian	hardwood stands; monotypic Doug-fir			
Roy 1991 ^a (Montana)	Mixed coniferous	<u>Winter-Spring</u> : mixed conifer; cedar-hemlock; (no selection by stand age)	<u>Winter-Spring</u> : subalpine fir; hardwood; rock			
Jones & Garton 1994 (Idaho)	Grand fir /subalpine fir	<u>Summer</u> : mature forest; old-growth <u>Winter</u> : young forest	<u>Summer</u> : non-forest; pole-sapling, young forest <u>Winter</u> : non-forest; pole-sapling			
Weir 1995 (British Columbia)	Spruce-fir	<u>Summer</u> : 20-40% deciduous. <u>Summer & Autumn</u> : mixed decid./conifer	<u>Summer</u> : 100% conifer. <u>Winter</u> : non-forested; selectively logged. <u>All seasons</u> : herb stage			

Table 2. Fisher habitat use in radio-telemetry studies in western North America.

^a Study of fishers trapped in Minnesota and transported to Montana for reintroduction.

(Zielinski et al. 1983, Jones and Garton 1994). Though there was a selection for young stands, mature and old-growth still represented 53% of winter locations and was present at 53% of random sample points (Jones and Garton 1994).

Stand age may not be as important in determining stand use by fishers as the structural characteristics that provide foraging, resting, and denning sites for fishers, and affect snow depth and density (Buskirk and Powell 1994, Powell and Zielinski 1994). Jones and Garton (1994) observed that within young stands used in winter, fishers selected sites with higher availability of large trees (>47 cm or 18.5 in dbh), snags (>52 cm or 20.5 in dbh) and logs (>47 cm) than random sites. The young stands in the study area were naturally regenerated after a stand replacement fire, and contained some of the structure associated with older forest (Jones and Garton 1994). Carey (1995) found that flying squirrels may be twice as abundant in young managed stands with old-growth legacies (large live trees, large snags, and large logs) than in managed stands without them. Fishers in southwestern Oregon are found in selectively logged areas, where forests contain abundant large snags and logs (K. Aubry, pers. comm.). Jones (1991) concluded that fishers in Idaho may not be old-growth dependent and that viable populations can be maintained as long as adequate proportions of mature forest are available.

Fisher association with late-successional forest may in part result from the need for a diverse prey base. Although young stands may support higher numbers of snowshoe hares (Koehler 1990), old-growth forest in Washington supports higher populations of Douglas' squirrels (Buchanan et

al. 1990); old growth stands also may support higher populations of forest-floor small mammals than younger managed closed canopy stands (Carey and Johnson 1995).

Effects of forest management. Even-aged management degrades fisher habitat by periodically removing the canopy and reducing the abundance of snags, cavity trees, and coarse woody debris (Ohmann et al. 1994). J. Jones (pers. comm.) suggested that even-aged management is not deleterious to fisher *per se*, but it is the extent and frequency at which it is applied to the landscape that is important. Fishers typically avoid areas with low canopy cover, large forest openings, clearcuts, and other cleared areas (Buck et al. 1983, Arthur et al. 1989b, Powell 1993, Buskirk and Powell 1994, Jones and Garton 1994, Weir 1995). Telemetry localities of fisher detections in California were associated with larger forest stands and stands with high connectivity, suggesting that fishers were sensitive to fragmentation (Rosenberg and Raphael 1986). Early and mid-successional even-aged forests likely do not provide the same prey resources, rest sites, and den sites as more mature forests (Powell and Zielinski 1994).

The conversion of mixed-species stands to Douglas-fir plantations may affect prey populations negatively. Carey and Johnson (1995) reported that western hemlock seeds are a more abundant and reliable food source than Douglas-fir seeds for small mammals. Johnson (1984) found that monotypic conifer forests were often not used by fishers in Wisconsin, probably due to the low prey diversity present. Fishers in Michigan avoided pine plantations (Thomasma 1996).

Little is known about the impacts of uneven-aged management. The level of timber harvest influenced fisher habitat use in California, and Buck et al. (1994) speculated that harvest which produced open stands and xeric conditions over large areas would be detrimental to fishers. Buck (1982) found 3 of 8 fisher rest sites in timber harvest units in which <20% of the canopy was removed. However, light harvests, or small patch cuts may increase habitat diversity thus prey diversity and have little negative impact on fishers where adequate late-successional forest are available (Arthur et al. 1989b, Jones and Garton 1994). In southwestern Oregon, fishers occur in uneven-aged, intensively managed forest; the area contains many roads and selectively harvested stands but snags, logs, and cavity trees are relatively abundant (K. Aubry, pers. comm.). Radio-collared fishers sometimes hunted in areas with low to moderate canopy closure, and one female denned in residual trees in a heavily harvested stand (K. Aubry, pers. comm.). Whether differences in the level of timber harvest are responsible for local variation in use of habitats by fisher may be determined during ongoing studies.

Habitat models. Allen (1983) developed a habitat suitability index (HSI) model for fishers and used winter habitat as the critical resource limiting fishers. In developiong the model, stands with higher canopy closure, larger trees, greater canopy diversity, and deciduous tree composition >10% and <50% were assumed to provide more suitable winter habitat, while also providing habitat in other seasons. Thomasma et al. (1991) evaluated Allen's (1983) model on the Ottawa National Forest in Upper Peninsula Michigan. They found fishers using habitats with higher HSI values more frequently than expected. This model has not been tested in habitats in the West. The model focuses on a stand and does not address the landscape in which the stand occurs, which may be more important in determining the level of use by fisher (J. Jones, pers. comm.).

Fishers and Snow

Raine (1983) reported that deep snow in Manitoba affected fisher mobility and habitat use. Travel in deep, soft snow is energetically costly, and fishers may concentrate their activities where snow is shallow or packed (Leonard 1980). Krohn et al. (1995, 1997) reported that patterns of fisher distribution and monthly winter snowfall in both Maine and California were consistent with the hypothesis that deep snow limits fisher populations. However, Jones (1991) found no evidence that snow conditions affected fisher habitat use in his Idaho study area.

Aubry and Houston (1992) noted that in western Washington, 48 of 55 fisher records (87%) were from less than 1000 m elevation, and none was from elevations over 1800 m. East of the Cascade crest, 6 of 33 records (18%) were from 1800-2200 m, and only 10 (30%) occurred below 1000 m (Aubry and Houston 1992). They suggested the absence of fisher records from the mountain hemlock zone in western Washington could be attributed to snowpacks of \leq 7.5 m, whereas the shallower snowpack east of the crest allowed fishers to inhabit higher elevations there. J. Jones (pers. comm.) suggested that the records compiled by Aubry and Houston (1992) may be biased because the lack of observers at elevations with deep snowpacks, or that competition with martens at high elevations could be reponsible for the pattern. However, most of the records with known dates are not from the winter when snowpack would be expected to limit access by observers (Appendix B). Also, though fishers and martens do appear to compete, fishers seem to displace martens, except in areas with frequent deep snowfall (Krohn et al. 1995, 1997, Thomasma 1996).

Dens and Rest Sites

Natal dens. Female fishers typically give birth in elevated cavities in live trees or snags (Buck et al. 1983, Weir 1995, Zielinski et al. 1995b, Aubry et al. 1996b, Paragi et al. 1996). Holthausen et al. (1994) speculated that this rather specialized requirement for natal den sites may have contributed to the decline of fishers in the Northwest with the conversion of old-growth forests to even-aged plantations. Use of downed logs and rock formations as natal dens has also been reported (Grinnell et al. 1937, Roy 1991, Zielinski et al. 1995b).

Maternal dens. When kits are somewhat mobile, the female may move them to a maternal den (i.e., a den used subsequent to the natal den) in a hollow downed log or other lower structure (K. Aubry, pers. comm.) so the uncoordinated, wandering kits will not fall from an elevated cavity den. As kits grow and become more coordinated, they may be moved to elevated maternal den sites. Females have been reported using as many as five den sites while raising kits, but disturbance by researchers may have increased the number of maternal dens used (Paragi et al. 1996). In Oregon, females were recorded to use one den for 8-10 weeks (K. Aubry pers. comm.)

Maternal dens were found in a wide variety of hardwood and conifer trees. In Maine, Paragi et al. (1996) found 31 of 33 den trees were in hardwoods, 16 of these were quaking aspens (*Populus tremuloides*). In Massachusetts and New Hampshire, Powell et al. (1997) found maternal dens in a variety of tree species, but 60% were in white pine (*Pinus strobus*) or eastern hemlock (*Tsuga*

canadensis). In the West, dens have been reported in quaking aspen, black oak (*Quercus kelloggii*), black cottonwood (*Populus balsamifera*), incense cedar (*Calocedrus decurrens*), Douglas-fir, white fir (*Abies concolor*), and pine (probably *Pinus ponderosa*) (Buck 1982, Weir 1995, Zielinski et al. 1995b, Aubry et al. 1997).

Maternal den trees are typically large. The smallest were reported by Paragi et al. (1996) in Maine, where den trees had a median dbh of 45 cm (17.7 in; range 25-92 cm, 10-36 in). In California, Zielinski et al. (1995b) reported that mean dbh of den trees and snags was 98 cm (38.6 in ; range 53-138 cm, 21-54 in), and Buck (1982) found a den in a 89 cm (35 in) snag. In British Columbia, Weir (1995) found five dens in cavities in the largest trees available (averaging 103 cm dbh). In Oregon, Aubry et al. (1997) found natal dens in a >70 cm dbh Douglas-fir and in a >100 cm dbh incense cedar, and maternal dens in an 85 cm (33.5 in) hollow white fir log and a 142 cm (56 in) hollow Douglas-fir log. Both natal dens occurred in cavities excavated by pileated woodpeckers in diseased live trees (Aubry et al. 1997). Female fishers appear to select pileated woodpecker cavities with openings large enough for them to squeeze through but too small for males to enter (K. Aubry, pers. comm.). This den-site selection behavior by females would help prevent infanticide by male fishers (Powell 1993, Paragi et al. 1996). Powell et al. (1997) recorded a mean dbh of 63 cm (24.8 in) for maternal den trees before 1 May, and a mean of 76 cm (29.9 in) after 1 May. They believed the shift to larger den trees with larger den openings later in the spring was made to accommodate the growing kits, and for improved ventilation (Powell et al. 1997).

Dens, especially natal dens, are often well above the ground. In Oregon, K. Aubry, pers. comm. found natal dens at a height of 18.0 m (59 ft) and 21.4 m (70.2 ft). Paragi et al. (1996) reported a median den entrance height of 7.0 m (23 ft) (n=29). Buck et al. (1983) reported a den 10.6 m (34.8 ft) from the base of a snag. Powell et al. (1997) reported a mean den height of 6.28 m (20.6 ft)(n=51). Weir (1995) recorded a mean height of 25.9 m (85 ft) for five dens in British Columbia.

Rest sites. Fishers use a variety of structures in live trees and snags for rest sites, including cavities, witches' brooms, mistletoe clumps, large lateral branches, squirrel and woodrat nests, stick nests, and forks. Large-diameter live trees are used most often (Table 3; Buck 1982, Arthur et al. 1989b, Seglund 1995, Weir 1995, Zielinski et al. 1997a). Fishers also use hollow logs, stumps, log and brush piles, root wads, ground and snow burrows, rock outcrops, and dense understory vegetation as rest sites (Buck 1982, Arthur et al. 1989b, Kohn et al. 1993, Powell 1993, Kilpatrick and Rego 1994, Zielinski et al. 1994, Seglund 1995, Weir 1995, Aubry et al. 1998).

Fishers seem to select rest sites based on thermal-cover needs; in winter, cavities and ground dens used more often than more open live-tree sites (Arthur et al. 1989b, Jones 1991, Seglund 1995). Fishers in British Columbia only used ground dens in winter, and only when the temperature dipped below -20°C (Weir 1995). Seglund (1995) reported that downed logs and subnivean rest sites were used more frequently by males than females, whereas in winter, snags were used by females more frequently than by males. She also found that rest sites were

		Trees ^a		Ground	
Study	Location	Live % (n)	Snags % (n)	Total % (n)	Sites (n)
Buck 1982	California	67(6)	22 (2)	89 (8)	11 (1)
Jones 1991	Idaho	78 (134)	8 (13)	85 (147)	15 (25)
Zielinski et al. 1995b	California	63 (80) ^b	27 (34)	90 (114)	10 (13)
Seglund 1995	California	67 (76)	20 (23)	87 (99)	13 (15)
Aubry et al. 1998	Oregon	66 (123)	14 (26)	80 (149)	20 (37)
Weir 1995	British Columbia			81 (26)	19 (6)
	Total	67 (419)	19 (120)	85 (565)	15 (97)

Table 3. Fisher use of tree and ground rest sites in western North America.

^a In live trees, rest sites included mistletoe-brooms or rust-brooms, cavities, and exposed large limbs. In snags, rest sites included cavities and hollow tops. Ground sites included sites inside logs or root-wads, in log or slash piles, in stumps, in rock outcrops, in subnivean and ground burrows, and in vegetation thickets.

^bNumbers interpreted from figure.

frequently ≤ 100 m from water and >100 m from human disturbance. In the southern Sierra Nevada of California, Zielinski et al. (1997a) found that fishers commonly used large-diameter conifers (105.4 cm [41.5 in] dbh average, n = 188; excluding giant sequoias (*Sequoiadendron giganteum*) and large oaks (65.3 cm [25.7 in] dbh average, n = 145) as rest sites. Jones and Garton (1994) reported a preference for large-diameter Engelmann spruce (*Picea engelmannii*) and hollow grand fir logs as resting sites in Idaho.

POPULATION DYNAMICS

Reproduction

Fishers have a relatively low reproductive capacity. Females are capable of breeding at age 1 and can give birth for the first time at age 2 (Powell 1993, Frost et al. 1997). Adult females may not produce litters every year and the proportion that does varies from year to year. Paragi et al. (1994) reported that for the years 1984-1989, an average of 63% of females raised litters to weaning each year in a heavily trapped population in Maine. The rate of reproductive success may depend on the age of the female, prey availability, and the physical condition of the female during fall and winter (Arthur and Krohn 1991, Paragi 1990). Productivity of females appears to peak at 4-5 years of age (Douglas and Strickland 1987, Paragi 1990).

Fishers, like all other *Martes* species, experience delayed implantation. That is, the fertilized egg or "blastocyst" develops only briefly after being fertilized then goes into a state of suspended development (Mead 1994). This period of suspended development lasts for 10-11 months (March or April to February). Implantation in the uterus and an active gestation of about 36 days

is triggered by lengthening photoperiod (Powell 1993, Frost et al. 1997). Females typically give birth to 1-4 young in late February, March or early April (Mead 1994). Females mate 3-10 days after parturition (Hall 1942). Mating may occur during several hours on one day, or a similar amount of time on several days.

Wright and Coulter (1967) reported that trapped females typically had 3 or 4 embryos in their uteri. However, Mead (1994) found that litter size was typically 2-3 and Paragi et al. (1994) reported a mean litter size of 2.2; these data suggest that fetus reabsorption, abortion, or post-partum mortality commonly occurs. The kits open their eyes about day 45-50 and attempt to walk at 6-8 weeks (Powell 1993). Kits are weaned at about this time and the mother begins provisioning them with prey. At age 10 weeks they can walk and climb awkwardly (Powell 1993), and will roam around outside the den entrance (K. Aubry, pers. comm.). Kits become independent of their mother in late summer and early fall.

Males can produce sperm during their first breeding season (Wright and Coulter 1967, Leonard 1986, Frost et al. 1997) but are not effective breeders until age 2 (Douglas and Strickland 1987). The baculum in yearling males may not be sufficiently developed to induce ovulation in receptive females (Douglas and Strickland 1987).

Males make extensive forays from established home ranges during the breeding season in March and April (Arthur et al. 1989a). Males apparently attempt to mate with as many females as possible. Fighting and other aggressive interactions between males may be common at this time. Breeding season forays outside their home range could provide males with breeding opportunities with additional females (Powell 1993).

Population Cycle

Fisher populations that rely heavily upon snowshoe hares for food reflect the cyclic abundance of this prey species. Total fisher harvests (and presumably the fisher population) for all of Canada exhibit a cycle that lags 3 years behind the snowshoe hare cycle (Bulmer 1974, 1975). This cycle is not evident in all parts of Canada; Keith (1963) reported that the fisher population in British Columbia does not cycle, and Leonard (1986) found no evidence of a cycle in southern Manitoba. In Washington and other areas in the southern portions of the hare's range, hare populations do not have a pronounced cycle (see Koehler 1990, Koehler and Aubry 1994). Kuehn (1989) demonstrated that Minnesota fishers fed more on small mammals (e.g., voles, mice, and shrews) and deer carrion in response to a decline in hare abundance, and showed no decline in reproductive success or condition.

Mortality and Survival

Where trapping of fishers for fur is permitted, it is typically the largest source of fisher mortality (Douglas and Strickland 1987). Fishers may also be killed by vehicles, predation, fighting, disease, infections, starvation, poisoning, accidents, and debilitation from porcupine quills (Strickland and Douglas 1984, Douglas and Strickland 1987, Proulx et al. 1994). Male fisher

pelts commonly (40-50%) show scarring from intraspecific fighting (Douglas and Strickland 1987). Fighting may account for a significant portion of natural mortalities among males. In Maine, Krohn et al. (1994) found that death of 94% of 50 radio-collared fisher were human related; trapping accounted for 80%, illegal shooting 6%, road-kills 4%, and one fisher died after its radio-collar got caught on a branch. Of 3 natural mortalities, one fisher died choking on deer cartilage, one of an infection, and the last was killed by coyotes (*Canis latrans*) (Krohn et al. 1994). There are few data on the frequency of predation on fishers. Douglas and Strickland (1987) stated that hawks, great horned owls (*Bubo virginianus*), red foxes (*Vulpes vulpes*), bobcats (*Lynx rufus*), lynx (*Lynx canadensis*), and black bears (*Ursus americanus*) may prey on fishers, especially kits. They also reported a fisher killed by dogs (*Canis familiaris*). In Montana, Roy (1991) reported that of 32 radio-collared fishers transplanted from Minnesota, 3 males were killed by mountain lions (*Felis concolor*), 2 females by coyotes, 1 male by a wolverine, 1 female by an eagle, and another female by a lynx.

Maximum life span of wild fishers is approximately 10 years (Kohn et al. 1993, Powell 1993). In Wisconsin, Kohn et al. (1993) found that of 919 harvested fishers 91% were \leq 3 years of age, 7% were 4-6, and only 2% were \geq 7 years of age. They found that the average age for captured females and males was 2.0 and 1.9 years of age, respectively. During the trapping season in Maine, juveniles had the lowest survival rate (0.38), whereas adult survival rates differed by sex with males having a significantly lower survival rate (0.57) than females (0.79). Survival rates outside the trapping season were higher for both adults (0.89) and juveniles (0.72) (Krohn et al. 1994). Paragi et al. (1994), used the same Maine data and found that mean annual survival rate was 0.65 for adult females (\geq 1 year old), and 0.27 for juveniles (sexes pooled).

Population Density

Fisher population densities are probably among the lowest for terrestrial carnivores of similar body size. Density of fisher populations is difficult to estimate and such estimates contain considerable error because some assumptions of standard estimating techniques are violated (Powell and Zielinski 1994). The best information on population densities of fishers (sexes combined) comes from Maine where densities were one per 2.8-10.5 km² in summer and one per 8.3-20.0 km² in winter (Arthur et al. 1989a), and in Massachusetts where density was one per 4.3-5.3 km² (York 1996). In Wisconsin, fisher density was about one per 6.5 km² (Kohn et al. 1993). Buck et al. (1983) reported a density of one per 3.2 km² in northwestern California, and fisher density in a 100 km² area in the southern Sierra Nevada of California was estimated at one per 10 km² (W. Zielinski, pers. comm.). Based on live-trapping capture rates, Jones (1991) reported that fisher density in Idaho seemed to be similar to the density in New Hampshire, lower than in Maine, and much lower than in California. Powell and Zielinski (1994) suggest that populations that resulted from reintroductions (Idaho, Montana, Michigan, Wisconsin) may not have had time to rebuild. Alternatively, lower densities in Idaho and Montana may result from regional differences in habitat productivity, predation, and incidental trapping (J. Jones, pers. comm.).

POPULATION STATUS

Past

No reliable estimates of historical fisher populations in Washington exist, and there are only a few statements specifically about fisher abundance in the early literature. The fur trade began in the Pacific Northwest soon after 1779 (when it was discovered that sea otter (*Enhydra lutris*) pelts obtained during the last voyage of Captain James Cook commanded a high price in China) (Gibson 1992:22). American Indians used fisher pelts for quivers, and were already involved in trading furs to white fur traders in 1804 (Suckley and Cooper 1860, Gibson 1992).

Evidence from archaeological sites suggest that fishers may have been less numerous than martens during the last several thousand years (R.L. Lyman, pers. comm.). This is consistent with historical trapping records which indicate that, though a significant number of fishers were taken, they were not as abundant in Washington as in other parts of their range. Notes for 1833, purportedly from the Fort Nisqually account books, record 23 fisher (Anonymous undated). Hudson's Bay Company (HBC) records indicate that for the period 1836-1852, an average of 385 fishers were obtained at forts in present-day Washington (HBC Archives, Winnepeg)(Table 4). However, most of these (88%) were collected at Fort Colville, the most convenient post for an area that included the southeast corner of British Columbia, northern Idaho, and Montana west of the Continental Divide, as well as northeastern Washington. Additional fishers were probably also obtained at Neah Bay on the Olympic Peninsula by the S.S. Beaver during this same period (Gibson 1992, Mackie 1997). The total is modest considering that >150,000 fisher were taken in North America during that period (Obbard et al. 1987). The total returns from Washington posts is also low compared to modern returns from other parts of the fisher's range. For example, for the period 1969-1979, trappers took a average of 2,000/year in Maine, and over 3,000/year in Ontario (Strickland and Douglas 1981). The total for North America during 1980-1984 was 20,000/year (Obbard et al. 1987).

Fishers, and furbearers in general, were not abundant in Washington's coastal forests, and mammal populations were reduced by trapping rather quickly. As early as the 1820's the HBC was disappointed with the lower Columbia River fur trade (Mackie 1997). Fort Vancouver fur returns declined steadily from 1833-1843 (Mackie 1997). Fort Vancouver averaged only 7.6 fishers/year, and Fort Nez Perces averaged only 19.5 fishers/year, for 1836-1852. The Puget Sound fur trade was also very modest, and in 1840 George Simpson, who managed HBC's affairs west of the Rockies, stated: "fur trade almost extinct in that quarter" (Mackie 1997). The trader at Fort Nisqually indicated that though the fishers were of very good quality, very few were killed (Huggins undated). Though interior districts were generally more productive, in 1841, Simpson noted of Fort Okanogan: "few or no furbearing animals in the surrounding country" (Mackie 1997:88). The fur trade further north, and especially inland, was more productive for the HBC.

A few years later in the 19th century, Suckley and Cooper (1860) obtained 53 specimens at Fort Dalles and 45 at Steilacoom. Suckley (p. xi, 92), who spent a year collecting in the Cascades,

reported that fishers were found "quite plentifully" in the thickly wooded areas of the Cascades; but Cooper (p. 76), who traveled separately and spent more time in southwestern and eastern Washington, indicated fishers "do not seem to be common" (Suckley and Cooper 1860). Coues (1877) quoted Newberry, who stated that fishers were "rare in Oregon, but less so in Washington."

Fisher populations were probably greatly reduced in some parts of Washington by 1900. C.H. Merriam reported that fishers were rare in the Nisqually Valley in 1897, but that a few were caught each year (Taylor and Shaw 1927). Only 6 fishers were caught in 30 years near Bumping

Year	Fort Vancouver	Fort Nisqually	Fort Nez Perces ^a	Fort Colville ^b	Total
1836	1	29	23	197	250
1837	8	21	-	395	424
1838	14	20	16	514	564
1839	16	44	16	615	691
1840	23	35	9	302	369
1841	4	28	10	237	279
1842	10	14	27	206	257
1843	11	19	30	229	289
1844	15	10	24	295	344
1845	-	21	30	263	314
1846	4	10	38	261	313
1847	8	9	31	328	376
1848	1	14	7	508	530
1849	1	6	4	411	422
1850	2	17	3	351	373
1851	1	23	2	345	371
1852	10	12	14	349	385
ttl	129	332	284	5806	6551

Table 4. Number of fisher obtained in trade at Hudson's Bay Company posts in Washington, 1836-1852 (Hudson's Bay Company Archives).

^a Fort Nez Perces received furs from an area that included northeastern Oregon

^b Fort Colville received furs from an area that included parts of present-day British Columbia, Idaho, and Montana, as well as northeastern Washington.

Lake, Yakima County with tracks last seen in 1915 (Scheffer 1938). The last reports of significant numbers of fishers are from the Olympic Peninsula and the Cascades (Scheffer 1957,1995; Dalquest 1948). Scheffer (1938, 1957, 1995) provided a number of accounts of fishers being captured before the season closure in 1933 as well as accounts of fishers being incidentally captured in traps set for other species in the Cascades, the Olympic Peninsula, and southwestern Washington. For the Olympic Peninsula, he reported accounts of 2 trappers taking 37 fishers in 1920 near the Queets River, and 2 other trappers capturing 20 fishers in 1921 near the Quinault River (Scheffer 1995). By 1938, fishers on the Olympic Peninsula were largely restricted to the "wild and roadless portions of the Olympic Mountains" (Scheffer 1938). Scheffer (1938) included a Forest Service game estimate for the fisher on the national forests in 1937: Chelan 4, Columbia 20, Mount Baker 30, Olympic 100, Snoqualmie 40, and Wenatchee 40. These estimates are probably only guesses, but they are indicative of the fisher's rarity at that time.

Sighting and trapping reports give no indication of recovery in recent decades. Most information on furbearing mammal populations is obtained through trapping data; but fisher seasons were closed in most of the western states before harvest records were kept. The season was closed in Washington in 1933, Oregon and Wyoming in 1936, Idaho and Montana sometime in the 1930s, and California in 1946. Yocum and McCollum (1973) obtained only nine records of fishers in Washington from the National Park Service and the Forest Service for the years 1955-73; seven from the Olympics, two from the northern Cascades. These were among the total of only 88 fishers records that Aubry and Houston (1992) compiled for Washington for the years 1955-91.

In the 1980s, biologists searched for fisher populations in Washington. In 1984, Keith Aubry of the USDA Forest Service conducted sooted track-plate surveys in 45 old-growth forest stands on the Wind River District of the Gifford Pinchot National Forest (K. Aubry, pers. comm.). The same year, Olympic National Park and Forest Service biologists attempted to detect fishers in the Elwha River drainage by using 6 line-triggered cameras, track plates, and live traps (Aubry and Houston 1989). No fishers were detected in 241 trap-nights and 130 plate-nights. In 1986, the Park Service and Forest Service conducted live-trapping (252 trap nights) and snow tracking in the Skokomish and Hamma River drainages (Aubry and Houston 1989). In 1990 and 1991, Aubry (with the help of Roger Powell in 1991) used live traps and line-triggered cameras in several attempts to detect fishers where they had been reported on the east side of the Olympic Peninsula. This included using urine of estrous female fishers, among other lures and strong-smelling bait (Powell 1991). None of these efforts were successful at detecting fishers; it appears that fishers were either absent or extremely rare in the areas sampled.

Present

The fisher is, by all indications, extremely rare in Washington. These indicators include incidental captures in traps, sighting reports, and systematic surveys. This supports the premise that fishers have never recovered from over-trapping in the 1800s and early 1900s.

Incidental captures. Fishers are relatively easy to trap, and where they are present, they occasionally get caught in traps set for other species, especially bobcat, marten, and coyote. Incidental capture data depends on trappers reporting the capture, which, though required by law, may impose serious inconvenience in remote areas, so compliance may vary widely. These 'incidental captures' are therefore, not a reliable method to estimate populations, but they may be useful as an indicator of the presence and relative abundance of fishers.

There are four reports of incidental capture of fishers in Washington in recent decades (1 each in 1969, 1987, 1990, and 1992; Appendix A). WDFW obtained a photo or carcass for three of these fishers. Since 1985, three fishers were captured incidental to bobcats, martens, and coyotes caught in approximately 2.4 million trap-nights. How much of this effort occurred in potential fisher habitat, or in areas with sightings, is unknown. In areas in which the fisher occurs in California, approximately 76,500 trap-nights (50,908 set-nights x 1.5 traps per set) set by five trappers for coyote, bobcat, raccoon, gray fox, and ringtail produced 72 incidental captures of fishers, or one fisher per 707 set-nights (Lewis and Zielinski 1996).

From 1993-1996, in Idaho 4 incidentally caught fishers were turned in, as required, with a statewide effort of 59,398 trapper days for all furbearer species combined (Melquist 1997). Based on extensive interviews, Luque (1983, 1984) suggested that although 14 carcasses had been turned in from 1978-82, the number of fishers actually caught may have been much higher than the number reported.

Sighting reports. Aubry and Houston (1992) compiled a list of sighting reports for Washington and ranked them by reliability. From 1980 to 1991, only 46 sightings of fishers were judged highly reliable (Aubry and Houston 1992). An additional 16 relatively reliable sightings were reported since (Appendix B), but have not been ranked for reliability by use of the criteria of Aubry and Houston (1992). Countless individuals hunt, trap, hike, and work in Washington forests, yet fewer than 4 reliable fisher sightings per year were compiled for the past 18 years. This compares with about 7 sightings/year during a 5-year period by only 20 trappers and 2 Conservation Officers in Idaho (Luque 1983).

Fishers are susceptible to collisions with vehicles (Paragi et al. 1994, Proulx et al. 1994, Zielinski et al. 1997b), but no road kills have ever been reported in Washington.

Systematic surveys. Several survey efforts with baited automatic cameras and track plates to determine the status and distribution of forest carnivores in Washington have been conducted in recent years (Table 5). The camera stations consist of cameras that are triggered by tripping a string or breaking an infrared beam when an animal investigates bait. Track plates consist of sooted metal sheets that record animal tracks at bait. Both track plates and camera stations are effective at detecting fishers (Zielinski and Kucera 1995, Foresman and Pearson 1995, Zielinski et al. 1997b). We do not have quantitative data on all the past surveys or current forest carnivore work that would be expected to detect fishers. We include the following summary of surveys for which we have obtained data. On 1 August 1990, Forest Service personnel obtained what was believed to be a fisher track on a sooted track plate in the Leavenworth Ranger District,

Table 5. Recent forest carnivore camera surveys (no fishers were detected).

Years	Study	Methods	Effort (# nights)	Result
1991	U.S. Forest Service (Jones & Raphael 1991)	1,081 line-triggered cameras (110 mm)	9,023	260 photos; 28 species
1992	WDFW-USFS (Sheets 1993)	197 line-triggered cameras (110 mm) located in patches of mature forest <u>></u> 780 ha	3,068	24 photos; 7 species
1994	Murray Pacific Corp. (Beak Consultants, Inc. 1995)	27 camera stations; line-triggered (110 mm) and infrared- triggered cameras (35mm)	260	57 photos; 7 species
1995- 1997	WFDW	183 infrared-triggered cameras	ca. 5,000	100s of photos; 27 species

Wenatchee National Forest, Chelan County. However, we cannot be certain whether it was a fisher or marten track. Male marten tracks are extremely similar to small female fisher tracks, and techniques for distinguishing these two species were only recently developed (Zielinski and Truex 1995).

In 1991, the Forest Service conducted extensive camera surveys in four study areas (Central Cascades, North Cascades, Olympic Peninsula, and Puget Trough), as part of a marten research project. No fishers were detected by this effort that involved over 1,000 line-triggered camera stations operated for a total of over 9,000 camera nights (Jones and Raphael 1991).

In 1992, WDFW and the U. S. Forest Service conducted camera station surveys to determine the current distribution of martens in the state (Sheets 1993). The surveys involved sampling 15 areas scattered in the Olympic, Mt. Baker-Snoqulamie, and Gifford Pinchot National Forests by use of 197 line-triggered camera stations (110 mm) for a total of over 3,000 camera nights. Stations were located in patches of at least 780 ha of contiguous mature timber, near riparian areas, and at elevations above 720 m. No fishers were detected.

In 1994, camera surveys were conducted on the Mineral Tree Farm, Lewis County, for Murray Pacific Corporation (Beak Consultants, Inc. 1995). Infrared and line-triggered cameras at 27 stations were placed in mature timber. No fishers were detected during a total of 260 camera nights.

From 1995-97, WDFW conducted carnivore surveys by use of 35-mm camera stations in forested areas throughout the state (Fig. 5). Zielinski and Kucera (1995) developed a standard survey protocol to detect carnivores. This protocol uses two 35-mm camera stations or six line-triggered cameras or enclosed track-plate stations in each survey "sample unit" (4-square-mile block or 4 sections). The 1995-97 surveys varied from this protocol in order to cover a larger area with the

available staff and cameras. Most of the sampling (90.5%) was done in winter (Nov-Mar), when bears are inactive and bait may be more effective for fishers (Kucera et al. 1995). These stations were operated an average of $31.0 (\pm 12.4)$ sample nights. The surveys totaled approximately 5,000 operational camera nights. No fishers were detected.

Fishers were detected by these survey techniques in California, Montana, and Oregon (Foresman and Pearson 1995, K. Aubry, pers. comm., Zielinski et al. 1997b). Zielinski et al. (1996) reported that fishers were detected at 67.5% of 40 track-plate sample units in the Klamath ecoprovince of northwestern California. Fishers were detected after a mean of only 3.4 days at 23% of 221 surveys using track plates or line-triggered cameras in the historical range of the fisher in California (Zielinski et al. 1997b). The number of days (latency) to detection was about 12 in a smaller survey on commercial timberlands in California (Zielinski et al. 1997b), and 9 days in

Figure 5. Locations of camera and track-plate stations in Washington, 1990-1997. (The 647 plotted locations represent 1088 of the survey stations during surveys conducted by WDFW, USFS, and Beak Consultants, Inc. (1995)).

Montana (Foresman and Pearson 1995). During the WDFW carnivore surveys, approximately 92% of stations were operated for more than 12 sample days.

The carnivore survey effort that was expended to detect the presence of fishers and other forest carnivores in Washington from 1990 to 1997 has been fairly extensive (Fig. 5). WDFW and USFS surveys involved ~1500 sample stations and totaled over 17,000 camera/track plate nights. The lack of detections of fishers given these and previous efforts indicates that fishers are very rare in Washington.

Future

The current rarity of fishers brings their continued existence in Washington in question. It is unknown whether the individual fishers that may exist in the state could repopulate Washington in the future (Forest Ecosystem Management Assessment Team 1993). Thomas et al. (1993) stated that existing fisher populations in northern Oregon and Washington were at a medium to high risk of extirpation on National Forest lands within the next 50 years. Reintroductions have been successful in other parts of the fisher's range. Recovery of the fisher in Washington would probably not occur without reintroductions.

Immigration of fishers into Washington from British Columbia, Idaho, or Montana, is possible but unlikely to provide significant demographic support to Washington's fisher population. Fisher populations in adjacent parts of Idaho and British Columbia are low, and the number of these dispersing individuals is probably very low (Heinemeyer 1995, A. Fontana, pers. comm.).

HABITAT STATUS

Past

When white settlers first arrived in Washington, there were about 10 million ha (24.7 million ac) of forest. Of this, perhaps 6.1 million ha (15 million ac) were potential fisher habitat (excludes ponderosa pine and west-side mountain hemlock, Engelmann spruce, and subalpine fir where heavy snowpacks accumulate). The exact percentage of this forest in late-successional or old-growth condition is unknown, but it was a high proportion (after nearly 100 years of logging, inventories in the 1930s indicated about 40% was still in old-growth)(Bolsinger and Waddell 1993). The remainder of the landscape included openings and areas of younger forest created by stand-replacing fires, windstorms, beaver ponds, and a few natural prairies and meadows. These old forests had abundant large woody structures for den and rest sites for fishers and prey species.

Historical trap returns indicate that though fishers were present in these forests, the populations were not as high or resilient as populations in New England and inland Canada. Reasons remain obscure, but the coastal and Puget Sound forests do not seem to have been very productive for furbearers in general (Mackie 1997), and fishers in particular.

Logging began with clearing of valleys for agriculture, and later proceeded up drainages to the higher elevations. The impacts to fisher habitat were the permanent loss of forest by conversion to non-forest uses, and the temporary loss of habitat from timber harvest. Indicative of the impact to older forest is that the estimate of standing volume of sawtimber for 1869 is 3.8 times the volume present today (Bolsinger et al. 1997). Nearly all the forests in the Puget lowlands and other readily accessible areas were logged by the early 1900s. Much of the forest in the valleys was converted to farmland, but private industry eventually acquired a large portion of the productive lower elevation timberlands. Since the 1930's about 10% of the forest was converted to other uses (Bolsinger et al. 1997).

The area of older forest has steadily diminished. Between 1933-36 and 1992, the area of oldgrowth forest was reduced by 70%, from >3.7 million ha to 1.1 million ha (Bolsinger and Waddell 1993). Some low and mid-elevation forest has now been logged twice.

Much of the original mixed-species stands were converted to managed stands of Douglas-fir. Inventories in 1967 and 1991 for the Olympic Peninsula and Puget Sound areas, which represents 2/3 of western Washington timberlands, indicate changes in species representation. Western hemlock composed the highest percentage of growing-stock volume in 1967, but declined across all ownerships. The percent growing-stock volume of Douglas-fir on industry lands increased from 24 to 33% and on non-National Forest public lands from 20.7 to 44.4% during that period.

Present

Washington's forest landscapes today are composed of small patches of different ages, interspersed with recently logged areas (Bolsinger and Waddell 1993). Most of the low elevation late-successional forest that was suitable fisher habitat has been converted to shortrotation plantation or non-forest uses, and forests are fragmented by highways, railroads, powerlines and residential development. Industry-owned forest accounts for 29% of the state's timberland (81% in western Washington), and is dominated by short-rotation Douglas-fir less than 50 years old (Bolsinger et al. 1997). Outside of national forests, stands less than 50 years old comprise 51% of the timberland in western Washington and 15% in eastern Washington (Bolsinger et al. 1997:19). Intensive timber management has resulted in forests that have few large snags and downed logs as compared to historical levels, and those that remain are in the later stages of decay (Cline et al. 1980, Spies and Cline 1988, Spies et al. 1988, Hansen et al. 1991). Short rotations can prevent the formation of large-diameter trees needed to produce cavity trees, snags, and logs that fishers use for den sites (Cline et al. 1980, Mannan et al. 1980). Although young stands may support relatively high numbers of snowshoe hares, young managed forest supports lower numbers of some fisher prey, including squirrels and forest-floor small mammals (Buchanan et al. 1990, Carey 1995, Carey and Johnson 1995). Lyon et al. (1994:132) wrote that a landscape of mostly early successional stands and small patches of mature forest is unlikely to provide suitable habitat for fishers.

Western hemlock and Pacific silver fir in managed forests have decreased notably (Bolsinger et al. 1997). Douglas-fir, which dominates most managed forest stands, may not provide as reliable

a seed source for seed-eating mammals (Douglas' squirrels, deer mice, and shrews) as western hemlock which produces some seed every year (Buchanan et al. 1990, Carey and Johnson 1995). Therefore, the current landscape of mostly managed Douglas-fir plantations may not support as abundant a prey base for fishers as older forest that contained more western hemlock.

Of the 1.1 million ha of old-growth remaining in 1992, most is above 600 m in elevation in national forests and national parks and on steep or poorer sites (Table 6) (Bolsinger and Waddell 1993, Bolsinger et al. 1997). Outside national forests, late-seral stands (100+ years old) compose only 3% of the forest in western Washington, and 15% in eastern Washington (Bolsinger et al. 1997:19).

Fishers can probably live in some mid-successional forest, if it contains sufficient structure and large logs, snags, and cavity trees, or patches of late-successional forest. Excluding ponderosa pine and west-side high elevation types (mountain hemlock, Engelmann spruce, subalpine fir), there is <3 million ha of timberland with sawtimber-sized (>23 cm or 9 in dbh) trees (Bolsinger et al. 1997:78-79). The amount of forest that contains contiguous canopy cover, and sufficient structure for den and rest sites is not known, but would likely be far below this total.

Reported densities of fishers range from one fisher per 250-2000 ha (*see* Population Density). Assuming a density of one fisher/800 ha, a small population of 50 fishers may require 40,000 ha (100,000 ac or 150 mi²) of more or less contiguous suitable habitat. If young, even-aged managed forest is incapable of supporting fishers, then suitable fisher habitat may be very limited and extremely fragmented. Areas in Washington with a history of uneven-aged management may currently provide better habitat for fishers than areas with a matrix of young even-aged plantations (K. Aubry, pers. comm.).

Owner/Administrator	Reserved	Unreserved	Total	Percent
National forests	250,787	540,629	791,416	68.9
National parks	280,453	0	280,453	24.4
U.S. Fish & Wildlife Service	121	0	121	0.01
State parks	3,591	0	3,591	0.3
State forests	9,308	18,363	27,671	2.4
Tribal	12,017	13,598	25,615	2.2
Private	0	19,830	19,830	1.7
Total	556,277	592,420	1,148,698	100%

Table 6. Area (ha) of old-growth forests in Washington on reserved and unreserved lands by ownership, 1992 ^a (Bolsinger and Waddell 1993).

^aDate of compilation. Actual dates of classification range from the early 1980s to 1992.
In the spring of 1991, Roger Powell spent 10 days assessing habitat suitability for fishers in Olympic National Park, as well as east and south of the Park boundary. He observed hare tracks in old growth and in dense naturally regenerated mixed stands of Douglas-fir, hemlock, and cedar that had complex physical structure. He believed these stands were good fisher habitat, but that outside the Park they were so small and widely scattered that "it is impossible to support a fisher population outside the Park" (Powell 1991).

Future

As of 1992, about 0.76 million ha (1.9 million ac; excluding ponderosa pine) of forest were in reserves (parks, wilderness, etc.)(Bolsinger et al. 1997). Where natural fire and other disturbance frequencies are low, these areas would be expected to be maintained in, or produce, late successional forest. In western Washington, some of this forest is at higher elevations, therefore unsuitable for fishers because of frequent or deep snow. In eastern Washington, frequent fires may prevent the establishment of late seral forest but forest with adequate levels of snags and logs needed by fishers may be maintained.

In addition to reserves, the preservation and management of older stands for northern spotted owls (*Strix occidentalis caurina*), marbled murrelets (*Brachyramphus marmoratus*), and protection of structure in riparian areas for salmonids in Washington may provide areas of suitable habitat for fishers in the future (Forest Ecosystem Management Assessment Team 1993). However, fishers require larger areas than spotted owls, and may require more extensive habitat connectivity of closed-canopy stands (Holthausen et al. 1994). Trends toward landscape management across large ownerships (National Forests, Washington Department of Natural Resources land, large timber companies) may help reduce fragmentation of suitable habitat and increase forest structure in future forests, improving the value of these lands for wide-ranging carnivores such as fishers (Holthausen et al. 1994).

Under short-rotation, even-aged management, the forest matrix is unlikely to support fisher populations without specific steps to maintain or create large logs and snags. Most of the large (>100 cm) woody debris that remains in managed forests are legacies of the original old-growth stand. The number of large snags, logs, and stumps may continue to decline except in riparian management areas and other sites where they are deliberately grown or created (Lewis 1998). The amount of non-industrial private timberlands is expected to continue to slowly decline because of conversion and urbanization (Bolsinger et al. 1997).

CONSERVATION STATUS

Legal Status

Washington. The fisher is classified as a Protected Species and as a state Candidate species in Washington. Fisher trapping has been prohibited since 1933. The species was identified by the Washington Department of Wildlife (WDFW) as a "species of concern" in 1978, and was

considered a sensitive species by WDFW from 1985-1991. In 1991, a change in regulations established the status of "Sensitive" and outlined the procedure for adding species to that list. The species became a Candidate for listing as Sensitive, Threatened, or Endangered in 1991.

USDI Fish and Wildlife Service. The fisher is listed as a "species of concern;" i.e., a species whose conservation standing is of concern to the Service, but for which status information is still needed (USDI Fish and Wildlife Service 1996). Species of Concern receive no formal protection; conservation efforts on their behalf are voluntary.

In 1990, a petition to list the fisher as Endangered in the Pacific States was submitted to the Fish and Wildlife Service (Central Sierra Audubon Society et al. 1990) and received a negative 90-day finding because it did not provide evidence sufficient to warrant listing. The Pacific fisher met the criteria for "species" under the Act, even though it may not be a valid subspecies (USDI Fish and Wildlife Service 1991). In 1994, the fisher was petitioned for listing as Threatened, this time throughout the western United States (USDI Fish and Wildlife Service 1996). This petition also received a negative 90-day finding because the Service contended that no evidence was provided to indicate that fisher populations occurring in the western U. S. were disjunct from the larger continuous population in Canada; the populations in the Pacific States and the Rocky Mountains were considered continuous peninsular extensions south from Canada (USDI Fish and Wildlife Service 1996). This decision was, in part, based on a policy change that stopped listings based on status of a species within political boundaries unless it included all the species' range in the lower 48 states (USDI Fish and Wildlife Service 1996).

USDA Forest Service. The fisher is listed as a Forest Service Sensitive Species in every region where it occurs except Region 6, which includes Oregon and Washington (Mcfarlane 1994). The fisher is currently a proposed Sensitive Species in Region 6 (G. Gunderson, pers. comm.).

Oregon. The fisher is designated a protected non-game species, and is listed as sensitive in Oregon (L. Cooper, pers. comm.). It is has been protected from commercial harvest since the trapping season was closed in 1936.

Idaho. In Idaho the fisher is classified as a protected non-game animal. Commercial trapping has been prohibited in Idaho since the season was closed sometime in the 1930s.

British Columbia. The fisher is a furbearing mammal that is commercially harvested in British Columbia. It is also included on British Columbia's blue list which includes indigenous species not threatened, but at risk. Four of 8 administrative regions presently have fisher trapping seasons which occur between 1 November and 28 February.

California. The fisher is classified as a furbearing mammal that is protected from commercial harvest and is listed as a Species of Special Concern by the state of California.

Montana. The fisher is classified as a furbearer in Montana, where there has been a limited annual trapping season since 1983.

30

September 1998

Wyoming. The fisher is designated a protected species in Wyoming and there is no commercial trapping season in the state (B. Luce, pers. comm.). The trapping season was closed in 1937 and there are no known reports of incidental captures (Brander and Books 1973). There are few observations of fishers in Wyoming and their occurrence in the state is in question.

Management Activities

Harvest and season closures. The fisher has not been commercially trapped in the western U.S. for most of this century. Montana re-opened a limited season in 1983. At present, the fisher season in Montana occurs from 1 December to 15 February, and there is a statewide quota of 7 fishers per season; two districts, the northwest and the west-central, have separate fisher quotas of 2 and 5, respectively. Both districts previously had quotas of 10 fishers each; however, variable detection rates of fishers from snow-track surveys prompted a conservative approach to harvest, and quotas have been reduced accordingly (B. Giddings, pers. comm.). Montana trappers are required to turn in fishers incidentally captured after the quota is reached. Idaho Fish and Game pays \$5 for fishers found dead after being incidentally captured in traps set for other species (Melquist 1997). The fisher is still commercially harvested in British Columbia, where a system of registered traplines is used for the management of furbearer harvests.

Reintroductions. The fisher has been reintroduced in numerous jurisdictions since the 1940's to reestablish populations after population declines (Table 7). A total of 54 fishers was reintroduced at 3 locations in Oregon. In 1961, 13 fishers from British Columbia were reintroduced to the Eagle Cap Wilderness Area of the Wallowa-Whitman National Forest and 11 fishers were reintroduced in the Winema National Forest at Buck Lake in Klamath County (Kebbe 1961). There was no evidence indicating that these reintroductions were successful, but additional reintroductions were attempted in the 1970s. Between 1977 and 1980, 17 fishers from British Columbia were reintroduced in the Rogue-Umpqua Divide Wilderness Area in Douglas County (n = 11), and near Prospect, Oregon in Jackson County (n = 6). In 1981, 13 fishers from Minnesota were reintroduced in the Rogue Umpqua Divide Wilderness Area in Douglas County (Aubry et al. 1996a, Lewis and Aubry 1997). A resident population of fishers occurs in the southern Cascades and possibly in southern Josephine County in southwestern Oregon.

The Idaho Department of Fish and Game (IDFG) released 39 fishers from British Columbia at 3 release sites in north-central Idaho in 1962 (Luque 1984). This reintroduction was successful and a population of fishers was re-established in the Clearwater drainage of the southern panhandle region. In Montana, fishers were first reintroduced at three locations in 1959-1960 (Weckworth and Wright 1968) then were reintroduced into the Cabinet Mountains in 1988-1991 (Roy 1991, Heinemeyer 1993). These reintroductions were apparently successful, as fishers are found in a 12-16 county area of northwest, west central and parts of southcentral Montana (B. Giddings, pers. comm.). Fishers were transplanted to augment existing populations from central, to southcentral, British Columbia in 1990-92 (Weir 1995) and to the Kootenay region in 1997 (A. Fontana, pers. comm.).

Release Location	Source Location ^a	Date	Sex Ration Males, Females	Literature Source	Comments
			,		
Nova Scotia	ranch	1947-48	6, 6	Benson 1959	Successful ^b
Wisconsin	NY	1955-57	6, 8	Bradle 1957	Successful, 1 site
Ontario	ON	1956	25 unk.	C. Douglas (Berg 1982)	No evaluation
Ontario	ON	1956-63	37, 60	C. Douglas (Berg 1982)	Successful
Wisconsin	MN, NY	1956-63	60 unk.	Irvine et al. 1964	Successful
Montana	BC	1959-60	16, 20	Weckwerth & Wright 1968	Successful
Vermont	ME	1959-60	19, 16	T. Fuller (Berg 1982)	Successful
Oregon	BC	1960	10, 14	Kebbe 1961, Morse 1961 Aubry et al.1996a	Failed, 2 sites
Michigan	MN	1961-63	61 unk.	Irvine et al. 1964	Successful
Idaho	BC	1962	39	Luque 1984	Successful- 1 site
Nova Scotia	ME	1963-66	80 unk.	Dodds & Martell 1971	Successful
Wisconsin	MN	1966-77	30, 30	Petersen et al. 1977	Successful
New Brunswick	NB	1966-68	10, 15	Dilworth 1974	No repro., 3 sites
West Virginia	NH	1968	6, 10; 7 unk.	Pack & Cromer 1981	Successful, 2 sites
Minnesota	MN	1968	15 unk.	W. Marshal (Berg 1982)	No evaluation
Maine	ME	1972	7 unk.	J. Hunt (Berg 1982)	Failed
Manitoba	MB	1972-73	4 unk.	R. Leonard (Berg 1982)	Failed
New York	NY	1977	43 unk.	Brown & Parsons 1983,	Successful
				Wallace & Henry 1985	
Oregon	BC	1977-80	17 unk.	Aubry et al. 1996a	Possibly success.
Ontario	ON	1979-82	27, 30	C. Douglas (Berg 1982)	No evaluation
Oregon	MN	1981	8, 5	Berg 1982, Aubry et al. 1996a	Possibly success.
Montana	MN	1988-89	13, 19	Roy 1991	Successful
Alberta	ON, MB	1990	6, 11	Proulx et al. 1994	Successful
Montana	WI	1990-91	34, 44	Heinemeyer 1993	Successful
British Columbia	BC	1990-92	2, 13	Weir 1995	Unknown
Manitoba	MB	1991-93	14, 8	Schmidt & Baird 1995	Unknown
Pennsylvania	NY, NH	1994-96	121 unk.	Serfass et al. 1996	Unknown
British Columbia	BC	1997	20 unk.	A. Fontana, BC Minist. Env.	Ongoing

Table 7. Fisher reintroductions in North America (modified from Roy 1991).

^a BC = British Columbia, NY = New York, MN = Minnesota, NB = New Brunswick , NH = New Hampshire, ME = Maine, WI = Wisconsin, ON = Ontario, MB = Manitoba, ranch = ranch raised.

^bSuccess indicates that fisher have persisted in the area since releases.

Research and surveys. Until recently, there had been very little study of the fisher in the Pacific Northwest and northern Rockies. Idaho Fish and Game, U.S. Forest Service, and the Idaho Trappers Association provided financial and material support for a study of the fisher population in Idaho (Jones 1991, Jones and Garton 1994). The Montana Department of Fish, Wildlife and Parks, Kootenai National Forest (USFS), and the Montana Cooperative Wildlife Research Unit supported two fisher studies concurrent with reintroductions conducted with the cooperation of the Minnesota Department of Natural Resources and the Wisconsin Department of Natural Resources (Roy 1991, Heinemeyer 1993).

In 1995, the USDA Forest Service, Pacific Northwest Research Station, initiated a fisher research project in the Rogue River National Forest. This research is being supported in part by Boise Cascade Corporation and the Oregon Department of Fish and Wildlife. This study is the first radio-telemetry study of fishers ever conducted in Washington or Oregon. The study is an investigation of den and rest site characteristics and habitats, the effect of stand and landscape composition on habitat use and home range, and food habits (Aubry et al.1997).

The British Columbia Ministry of the Environment, B.C. Ministry of Forests, B.C. Trappers Association, and the Science Council of B.C., supported a recent study of fisher in British Columbia (Weir 1995).

Survey techniques were developed in recent years to improve assessments of the status of rare forest carnivores in the West (Zielinski and and Kucera 1995). These techniques, and variations thereof, have been used to assess the status of fisher. WDFW, in cooperation with the USDA Forest Service, conducted marten surveys in 1992 and carnivore surveys in 1995-97 which would be expected to detect the presence of fisher (see discussion under POPULATION STATUS: Present). The Forest Service also conducted surveys for forest carnivores on national forests in Oregon. Although most surveys failed to detect fishers, fishers were detected on the Rogue River and Umpqua national forests in Oregon before the study initiated in 1995.

Information and education. In 1994, the Forest Service published a Conservation Assessment for forest carnivores including the lynx, American marten, wolverine, and fisher (Ruggiero et al. 1994a). They also produced an extensive literature review and a proposed adaptive management strategy for fishers in the western U. S. (Heinemeyer and Jones 1994). These documents resulted from greater attention to the conservation, research and monitoring of forest carnivores. The Western Forest Carnivore Committee has produced maps of potential fisher habitat, draft Conservation Strategy overlays, and draft management recommendations for the Northern Rockies and for Idaho (Heinemeyer 1995, Ruediger 1994). The British Columbia Ministry of Environment has published a bulletin, *A Fisher Management Strategy for British Columbia*, that includes an annotated bibliography (Banci 1989).

WDFW produced a Fact Sheet for the fisher in 1998, and is currently revising Priority Habitats and Species management recommendations for the fisher. Most jurisdictions have developed information brochures, packets, or classes for trappers that include information on techniques to avoid incidentally capturing fishers and other non-target species.

FACTORS AFFECTING CONTINUED EXISTENCE

Incidental Mortalities

Trapping. Where fishers are protected from trapping, they are often incidentally captured in traps set for other species (Luque 1984, Lewis and Zielinski 1996). Incidental captures are not illegal provided the animal is released when possible, but these captures often result in crippling injury or mortality (Strickland and Douglas 1984). The significance of incidental captures in Washington for population recovery is unknown, but any source of mortalities in very small populations can have significant negative effects. Powell (1979) reported that as few as 1- 4 additional mortalities per year due to trapping over a 100 km² area could cause a decline in a mid-western fisher population. Mortalities from incidental captures could be frequent enough to prevent local recovery of populations, or prevent the re-occupation of suitable habitat. Area trapping restrictions on setting traps on land could be used to reduce trapping mortalities if a population was found, or re-established through reintroduction.

Vehicle collisions. Though not as important a source of mortality as trapping, fishers are struck and killed by vehicles (Proulx et al.1994, York 1996, Zielinski et al. 1995a, 1997b). The potential for vehicle collisions increases with the density of open roads in suitable habitat. Vehicles caused the death of 2 of 50 (4%) of radio-collared fishers in a Maine study (Krohn et al. 1994), and 3 of 97 (3%) fishers in Massachusetts (York 1996). Though no road-kills have been reported in Washington, vehicle collisions could be a significant mortality factor for any small fisher population, particularly following a reintroduction.

Habitat Loss, Alteration, and Fragmentation

Forest management. The conversion of low-elevation forests in western Washington to plantations and non-forest uses may have eliminated a large portion of the fisher habitat in the state (Powell and Zielinski 1994). Most of the low and mid-elevation forest is now younger, fragmented, and has reduced amounts of large snags and coarse woody debris, and may not be able to sustain fisher populations (Rosenberg and Raphael 1986, Lyon et al 1994, Powell and Zeilinski 1994). Most contiguous landscapes of older forests occur at high elevations and these areas may be less suitable for fishers in areas of deep snowpacks (Aubry and Houston 1992, Holthausen et al. 1994). The effects of partial cutting and commercial thinning of forest stands on habitat suitability are unknown, but may depend on how much of the canopy is removed and if potential den sites are lost. Jones (1991) suggests that viable populations of fishers could be maintained in the absence of old-growth forest, as long as adequate proportions of mature forest are available. Fragmentation of late-successional forest and loss of potential natal den sites may be the most detrimental aspects of habitat alteration that have occurred. Younger forest in which large logs, snags, and cavity trees are maintained in significant numbers, and which provides a diverse prey base may be suitable for fisher.

Fire, wind, and vulcanism. Stand replacement fires can impact large areas, and render them unsuitable for fisher for several decades. During unusually dry and windy conditions, past

wildfires and reburns destroyed the forest on millions of acres in the northern Rockies and Pacific Northwest. For example, the Yacolt fire of 1902 burned 200,000 acres in the Lewis Valley (Pyne 1982). Modern fire suppression techniques reduce the likelihood of such large fires, but fire has the potential for significant impacts on fisher habitat.

Unusual events, such as weather and volcanic eruptions could impact fisher habitat. The 1980 eruption of Mt. St. Helens leveled large areas of forest with the initial blast and subsequent mudflows. Severe wind storms that produce large blowdowns can impact large areas of forest, primarily in coastal areas. For example, a hurricane hit the Olympic Penninsula in 1921 and leveled large areas of forest, and a 1962 windstorm felled 7 billion board feet of timber (Pyne 1982).

Forest Landscape Planning

Management of federal lands in Oregon and Washington within the range of the northern spotted owl is expected to provide some conservation benefits to the fisher (USDA Forest Service and USDI Bureau of Land Management 1994, Holthausen et al. 1994). The Washington Department of Natural Resources (WDNR) and several companies that own large blocks of timberland in Washington have developed Habitat Conservation Plans with the U. S. Fish and Wildlife Service, as outlined under Section 10 of the Endangered Species Act. These landowners have committed to long-term (50-100 year) plans to protect selected species of birds and mammals. Some of these plans offer habitat management provisions likely to benefit any remnant or reintroduced fisher populations. WDNR indicated in their habitat conservation plan, that habitat provisions for spotted owls and marbled murrelets as well as protection for forest riparian habitat and large legacy trees will help conserve habitat for fishers (WDNR 1996).

Genetic, Demographic, and Environmental Risks to Small Populations

Any small population of fishers that exists or became established in Washington would be vulnerable to random demographic events (e.g., variation in sex ratios, reproduction, and survival) and environmental events (e.g., severe weather, fire, volcanic eruption) and their indirect effects (Shaffer 1987). Disease does not seem to be a significant mortality factor in fisher populations (Powell 1993); however, in small populations, the loss of a few reproductive females could affect local population stability. In small populations, multiple random factors are more likely to interact to affect the population negatively than in larger populations. The ability to find mates may be reduced in small or sparse populations, potentially resulting in a loss of productivity (the "Allee effect"). Small populations are more likely to suffer negative genetic effects as a result of genetic drift and inbreeding (Allendorf 1983). Inbreeding may reduce fertility, thus making a population less able to recover from periods of low recruitment and greatly increase the probability of extirpation. Also, small populations can suffer genetic "bottlenecks," in which the descendants of remaining individuals exhibit little genetic variation, and may be more susceptible to diseases or be less able to adapt to new conditions (Schonewald-Cox et al. 1983).

CONCLUSIONS AND RECOMMENDATIONS

The fisher is rare in Washington. Infrequent sighting reports and incidental captures indicate that a small number may still be present. However, despite extensive surveys, the Department has been unable to confirm the existence of a population in the state. Fisher biology is characterized by low population density, low reproductive rates, and large territories. Fishers are generally associated with late-successional (mature and old- growth) coniferous and mixed coniferous-deciduous forest, but use a variety of stand ages. In western Washington, fishers may have been restricted to elevations below 1800 m by deep snow packs or frequent soft snow conditions. Forests with a high percentage canopy closure, multiple canopies, shrubs, and habitats that support a diverse prey base are most used. Large-diameter trees, large snags, tree cavities, and logs are most often used for den and rest sites, and are an important component of suitable habitat.

The fisher was over-trapped in the 19th, and early 20th centuries. Trapping, indiscriminate poisoning during predator and pest control programs, and loss and alteration of habitat probably combined to push the fisher close to extirpation. Despite being protected from commercial harvest for 64 years, the fisher has not recovered. We believe that remaining fishers in Washington are unlikely to represent a viable population, and without recovery activities, the species is likely to be extirpated from the state. For these reasons, the Department recommends that the fisher be listed as an endangered species in the state of Washington.

REFERENCES CITED

- Allen, A. W. 1983. Habitat suitability index models: Fisher. U.S. Fish and Wildlife Service, FWS/OBS-82/10.45.
- Allendorf, W.W. 1983. Isolation, gene flow, and genetic differentiation among populations. Pages 51-65 in C. M. Schonewald-Cox, ed. Genetics and Conservation: a reference for managing wild animal and plant populations. The Benjamin/Cummings Publ. Co., Menlo Park, CA.
- Anonymous. Undated. Notes Copied from the Hudson's Bay Company's Account Books at Fort Nisqually, 1833-1850.
- Arthur, S. M., and W. B. Krohn. 1991. Activity patterns, movements, and reproductive ecology of fishers in southcentral Maine. J. Mamm. 72:379-85.
- , ____, and J. R. Gilbert. 1989a. Home range characteristics of adult fishers. J. Wildl. Manage. 53:674-79.
- , ____, and ____, 1989b. Habitat use and diet of fishers. J. Wildl. Manage. 53:680-88.
- Aubry, K. B., and D. B. Houston. 1989. Preliminary proposal for a cooperative live-trapping and radio-telemetry study of fisher on the Olympic Peninsula (DRAFT). Unpublished research proposal, USDA For. Serv. PNW Research Stn, Olympia, and National Park Serv., Olympic National Park, Port Angeles. 9 pp.
- ———, and ————. 1992. Distribution and status of the fisher (*Martes pennanti*) in Washington. Northwest. Naturalist 73:69-79.
 - -----, J. C. Lewis, and C. M. Raley. 1996a. Reintroduction, current distribution, and ecology of fishers in southwestern Oregon: a progress report. Martes Working Group Newsletter 4:8-10
- , C. M. Raley, T. J. Catton, G. W. Tomb, and F. E. Wahl. 1996b. Ecological characteristics of fishers in southwestern Oregon. Pages 84-90 *in* Ecology, management, and conservation of sensitive wildlife species. UDSA Forest Service, PNW Res. Sta., Olympia, Wildl. Ecol. Team, Annual Rep. 123 pp.
- , _ _ _ , _ _ _ , _ _ _ , and _ _ _ . 1997. Rogue River Fisher Study: Ecological characteristics of fishers in southwestern Oregon. Progress Report: February 1997. USDA Forest Service, PNW Res. Sta., Olympia, Boise Cascade Corporation, and Oregon Department of Fish and Wildlife (cooperators). 7 pp.
- Banci, V. 1989. A fisher management strategy for British Columbia. B. C. Minist. Env., Wildl. Branch, Wildl. Bull. No. B-63.
- Bailey, V. 1936. The Mammals and Life Zones of Oregon. North American Fauna 55:1-416.
- Beak Consultants Incorporated. 1995. 1994 Pacific Fisher Surveys of the Mineral Tree Farm, Lewis County, Washington. (for Murray Pacific Corporation, Tacoma, WA). Beak Consultants Inc., Kirkland, WA. 14 pp.
- Benson, D. A. 1959. The fisher in Nova Scotia. J. Mamm. 40:451.
- Berg, W. E. 1982. Reintroduction of fisher, pine marten and river otter. Pages 150-174 *in* G. C. Sanderson (ed.), Midwest Furbearer Management. The Wildlife Society, Kansas Chapter. 195 pp.

September 1998

- Bolsinger, C. L., N. McKay, D. R. Gedney, C. Alerich. 1997. Washington's public and private forests. Resource Bull. PNW-RB-218. U.S. Depart. Of Agriculture, Forest Service, Pacific Northwest Research Station, Portland. 144 pp.
- , and K. L. Waddell. 1993. Area of old-growth forests in California, Oregon, and Washington. Resource Bull. PNW-RB-197. U.S. Depart. Of Agriculture, Forest Service, Pacific Northwest Research Station, Portland. 26 pp.
- Booth, E. S. 1947. Systematic review of the land mammals of Washington. Ph.D. Dissert. State College of Washington. 646 pp.
- Bradle, B. J. 1957. The fisher returns to Wisconsin. Wisconsin Conserv. Bull. 22(11):9-11.
- Brander, R. B., and D. J. Books. 1973. Return of the fisher. Natural Hist. 82(1):52-57.
- Brown, M. K. and G. R. Parsons. 1983. Movement of a male fisher in southern New York. N.Y. Fish and Game J. 30:114-115.
- Bryan, A. L. 1963. An archaeological survey of northern Puget Sound. Occas. Papers of the Idaho State University Museum, No. 11., Pocatello, ID.
- Buchanan, J. B. R. W. Lundquist, and K. B. Aubry. 1990. Winter populations of Douglas' squirrels in differentaged Douglas-fir forests. J. Wildl. Manage. 54:577-581.
- Buck, S. 1982. Habitat utilization by fisher (*Martes pennanti*) near Big Bar, California. M. S. thesis, Humboldt St. Univ., Arcata, CA.
 - ——, C. Mullis, and A. Mossman. 1983. Corral-Bottom/Hayfork Bally fisher study. Unpubl. final rep., USDA Forest Service and Humboldt St. Univ., Arcata, Calif. 102 pp.
 - , _____, ____, I. Show, and C. Coolahan. 1994. Habitat use by fishers in adjoining heavily and lightly harvested forest. Pp 368-376, *in* Buskirk, S. W., A. S. Harestad, M. G. Raphael, and R. A. Powell, eds. Martens, sables, and fishers: biology and conservation. Cornell Univ. Press, Ithaca, NY. 484 pp.
- Bulmer, M. G. 1974. A statistical analysis of the 10-year cycle in Canada. J. Anim. Ecol. 43:701-718.
- Buskirk, S. W., and R. A. Powell. 1994. Habitat ecology of fishers and American martens. Pages 283-296 in Buskirk, S. W., A. S. Harestad, M. G. Raphael, and R. A. Powell, eds. Martens, sables, and fishers: biology and conservation. Cornell Univ. Press, Ithaca, NY. 484 pp.
- Carey, A. B. 1995. Sciurids in Pacific Northwest managed and old-growth forests. Ecol. Applic. 5:648-661.
- ———, and M. L. Johnson. 1995. Small mammals in managed, naturally young, and old-growth forests. Ecol. Applic. 5:336-352.
- Cassidy, K. M. 1997. Washington State land cover manual: metadata and data dictionary. Supplement A, *in* Cassidy, K. M. C. E. Grue, M. R. Smith, and K. M. Dvornich, eds. Washington State Gap Analysis - Final Report. Washington Cooperative Fish and Wildlife Research Unit, Univ. Of Washington, Seattle. 304 pp.
- Central Sierra Audubon Society [et al.]. 1990. Petition for a rule to list the fisher as endangered. Central Sierra Audubon Society, North San Juan, CA. 26 pp.

- Cline, S.P., A. B. Berg, H. W. Wight. 1980. Snag characteristics and dynamics in Douglas-fir forest, western Oregon. J. Wildl. Manage. 44:773-786.
- Coues, E. 1877. Fur-bearing Animals: a monograph of North American Mustelidae. U.S. Dept. Of the Interior, Misc. Publ. No. 8:1-348
- Coulter, M. W. 1966. Ecology and management of fishers in Maine. Ph.D. Dissert., State Univ., College of Forestry at Syracuse University, New York, 196 pp.
- Dalquest, W. W. 1948. Mammals of Washington. Univ. of Kansas Publ., Mus. Nat. Hist., vol. 2, 444 pp.
- Dark, S. J. 1997. A landscape-scale analysis of mammalian carnivore distribution and habitat use by fisher. M.S. Thesis, Humbolt State Univ. 67 pp.
- deVos, A. 1952. Ecology and management of fisher and marten in Ontario, Ontario Dept. Lands For. Tech. Bull., Wildl. Ser., 1. 90 pp.
- Dilworth, T.G. 1974. The status and distribution of fisher and marten in New Brunswick. Can. Field-Natur. 88:495-498.
- Dodds, D. G., and A. M. Martell. 1971. The recent status of the fisher, Martes pennanti (Erxleben), in Nova Scotia. Can. Field-Natur. 85:62-65.
- Douglas, C. W., and M. A. Strickland. 1987. Fisher. Pages 511-529 in Novak, M., J. A. Baker, M. E. Obbard, B. Malloch.(eds.) Wild Furbearer Management and Conservation in North America. Ontario Ministry of Natural Resources and the Ontario Trappers Association. 1150 pp.
- Erlinge, S. 1979. Adaptive significance of sexual dimorphism in weasels. Oikos 33:233-245.
- Forest Ecosystem Management Assessment Team. 1993. Forest ecosystem assessment: an ecological, economic, amd social assessment. USDA Forest Service, Portland, OR.
- Foresman, K.R. and D.E. Pearson. 1995. Testing of proposed survey methods for the detection of wolverine, lynx, fisher, and American marten in Bitteroot National Forest. Final Report for the Research Joint Venture Agreement INT-94918, USDA For. Serv. Intermountain Res. Stn., Missoula, MT. 103 pp.
- Frost, H. C., William B. Krohn, and C. R. Wallace. 1997. Age-specific reproductive characteristics in fishers. J. Mamm. 72:598-612.
- Gibilisco, C. J. 1994. Distributional dynamics of American martens and fishers in North America. Pages 59-71 in Buskirk, S. W., A. S. Harestad, M. G. Raphael, and R. A. Powell, eds. Martens, sables, and fishers: biology and conservation. Cornell Univ. Press, Ithaca, NY. 684 pp.
- Gibson, J. R. 1992. Otter Skins, Boston Ships, and China Goods: the maritime fur trade of the northwest coast, 1785-1841. University of Washington Press, Seattle. 422 pp.
- Giuliano, W. M., J. A. Litvaitis, and C. L. Stevens. 1989. Prey selection in relation to sexual dimorphism of fishers (*Martes pennanti*) in New Hampshire. J. Mamm. 70:639-41.

39

Goldman, F. A. 1935. New American mustelids of the genera Martes, Gulo, and Lutra. Proc. Biol. Soc. Wash. 48:175-86.

- Graham, R. W., and M. A. Graham. 1994. The late quaternary distribution of Martes in North America. Pages 26-58 in Buskirk, S. W., A. S. Harestad, M. G. Raphael, and R. A. Powell, eds. Martens, sables, and fishers: biology and conservation. Cornell Univ. Press, Ithaca, NY. 684 pp.
- Greenwood, P. J. 1980. Mating systems, philpatry and dispersal in birds and mammals. Anim. Behav. 28:1140-1162.
- Grenfell, W. E., and M. Fasenfest. 1979. Winter food habits of fishers, Martes pennanti, in northwestern California. Calif. Fish & Game. 65:186-89.
- Grinnell, J., J. S. Dixon, and L. M. Linsdale. 1937. Fur-Bearing Mammals of California: Their Natural History, Systematic Status and Relations to Man. Vol. 1. Univ. of California Press, Berkeley.

Hagmeier, E. M. 1956. Distribution of marten and fisher in North America. Can. Field-Natur. 70:149-68.

- Hall, E. R. 1942. Gestation period in the fisher with recommendations for the animals protection in California. Calif. Fish and Game 28:143-147.
- ———. 1981. The Mammals of North America. John Wiley and Sons, New York.
- Hansen, A. J., T. A. Spies, F. J. Swanson, and J. L. Ohmann. 1991. Conserving biodiversity in managed forests: lessons from natural forests. Bioscience 41:382-392.
- Heinemeyer, K. S. 1993. Temporal dynamics in the movements, habitat use, activity, and spacing of reintroduced fishers in northwestern Montana. M. S. thesis, Univ. of Montana, Missoula. 158 pp.
- ———, and J. L. Jones. 1994. Fisher biology and management in the western United States: a review and adaptive management strategy. USDA Forest Service Northern Region, Missoula, MT. 108 pp.
- Holthausen, R. S., R. Anthony, K. Aubry, K. Burnett, N. Fredricks, J. Furnish, R. Lesher, E. C. Meslow, M. Raphael, R. Rosentree, and E. E. Starkey. 1994. Final supplemental environmental impact statement on management of habitat for late-successional and old-growth forest related species within the range of the northern spotted owl, Appendix J2-results of additional species analysis. USDA Forest Service, Portland, OR.
- Huggins, E. undated. About the fur trade on Puget Sound, from 1850 'til 1880. Typewritten copies of articles which appeared in the Sunday Oregonian. (On file at Special Collections, Suzallo Library, Univ. Washington, Seattle, WA. 19 pp.
- Irvine, G. W., L. T. Magnus, and B. J. Bradle. 1964. The restocking of fishers in lake states forests. Trans. N. Amer. Wildl. Nat. Res. Conf. 29:307-15.
- Johnson, S. A. 1984. Home range, movements, and habitat use of fishers in Wisconsin. M.S. Thesis, Univ. Wisconsin, Stevens Point. 78 pp. (Not seen, in Heinemeyer and Jones 1994).
- Johnson, R. E., and K. M. Cassidy. 1997. Terrestrial mammals of Washington State: Location data and predicted distributions. Vol. 3 *in* Cassidy, K. M. C. E. Grue, M. R. Smith, and K. M. Dvornich, eds. Washington

State Gap Analysis - Final Report. Washington Cooperative Fish and Wildlife Research Unit, Univ. Of Washington, Seattle. 304 pp.

- Johnson, W. A., and A. W. Todd. 1985. Fisher, *Martes pennanti*, behavior in proximity to human activity. Can. Field-Natur. 99:367-369.
- Jones, J. L. 1991. Habitat use of fishers in north-central Idaho. M.S. thesis, Univ. of Idaho, Moscow. 147 pp.
- , and E. O. Garton. 1994. Selection of successional stages by fishers in north-central Idaho. Pages 377-387 in Buskirk, S. W., A. S. Harestad, M. G. Raphael, and R. A. Powell, eds. Martens, sables, and fishers: biology and conservation. Cornell Univ. Press, Ithaca, NY. 684 pp.
- Jones, L. L. C., and M. G. Raphael. 1991. Ecology and management of marten in fragmented habitats of the Pacific Northwest. Progress Report: Fiscal Year 1991. Pacific Northwest Research Station, Olympia, WA. 36 pp.
- Kebbe, C. E. 1961. Return of the fisher. Oregon State Game Comm. Bull. 16:3-7.
- Keith, L.B. 1963. Wildlife's Ten-year Cycle. University of Wisconsin Press, Madison, WI. 201 pp.
- Kelly, G. M. 1977. Fisher (Martes pennanti) biology in the White Mountain National Forest and adhacent areas. Ph.D. Thesis, Univ. Massachusetts, Amherst. 778 pp.
- Kilpatrick, H. J. and P. W. Rego. 1994. Influence of season, sex, and site availability on fisher (*Martes pennanti*) rest-site selection in the central hardwood forest. Canadian Journal Zoology 72: 1416-1419.
- Koehler, G. M. 1990. Population and habitat characteristics of lynx and snowshoe hares in north central Washington. Can. J. Zool. 68:845-851.
- , and K. B. Aubry. 1994. Lynx. Pages 74-98 *in* Ruggiero, L. F., K. B. Aubry, S. W. Buskirk, L. Jack Lyon, and W. J. Zielinski, eds. The scientific basis for conserving forest carnivores: American marten, fisher, lynx, and wolverine in the western United States. Gen. Tech. Rep. RM-254. Fort Collins, CO: U. S. Dept. Agric., Rocky Mountain For. and Range Exp. Sta. 183 pp.
- Kohn, B. E., N. F. Payne, J. E. Ashbrenner, and W. E. Creed. 1993. The fisher in Wisconsin. Wisconsin Dep. Nat. Resour., Tech. Bull. No. 183. 24 pp.
- Krohn, W. B., S. M. Arthur, and T. F. Paragi. 1994. Mortality and vulnerability of a heavily trapped fisher population. Pages 137-145 *in* Buskirk, S. W., A. S. Harestad, M. G. Raphael, and R. A. Powell, eds. Martens, sables, and fishers: biology and conservation. Cornell Univ. Press, Ithaca, NY.
- ———, W. J. Zielinski, R. B. Boone. 1997. Relations among fishers, snow, and martens in California: results from small scale spatial comparisons. Pages 211-232 in G. Proulx, H. N. Bryant, and P.M. Woodard, eds. Martes: taxonomy, ecology, techniques, and management. Provincial Museum of Alberta, Edmonton.
- Kucera, T. E., A.M. Soukkala, W.J. Zielinski. 1995. Photographic bait stations. Chapter 3, *in* W. J. Zielinski and T. E. Kucera, eds. 1995. American marten, fisher, lynx, and wolverine: survey methods for their detection. USDA Forest Service, Gen. Tech. Rep. PSW-GTR-157. 164 pp.

Kuehn, D. W. 1989. Winter foods of fishers during a snowshoe hare decline. J. Wildl. Manage. 53:688-92.

- Leonard, R. D. 1980. Winter activity and movements, winter diet and bredding biology of the fisher (Martes pennanti) in southeastern Manitoba. M.S. Thesis, University of Manitoba, Winnepeg, 181 pp.(not seen, in: Buskirk and Powell 1994)
- -------. 1986. Aspects of reproduction of the fisher, Martes pennanti, in Manitoba. Can. Field-Natur. 100:32-44.
- Lewis, J. C. 1998. Creating snags and wildlife trees in commercial forest landscapes. West. J. Appl. Forestry 13:97-101.
- ———, and W. J. Zielinski. 1996. Historical harvest and incidental capture of fishers in California. Northwest Sci. 70:291-297.
- Luque, M. 1983. Report on Fisher Survey-1983. Unpubl. Report to Idaho Department of Fish and Game. 17 pp.

- 1983. Report on Fisher Survey-1983. Unpubl. Report to Idaho Department of Fish and Game. 17 pp.
- Lyman, R. L. 1995. Mammalian and avian zooarchaeology of the West Point, Washington Archaeological sites (45KI428 and 45KI429). p 9-1-9-59, *in* The Archaeology of West Point, Seattle, Washington, edited by L. L. Larson and D. E. Lewarch. King County Department of Metropolitan Services, Seattle.
- Lyon, L.J., K.B. Aubry, W.J. Zielinski, S.W. Buskirk, L. F. Ruggiero. 1994. The scientific basis for conserving forest carnivores: considerations for management. Chapter 3 *in* Ruggiero, L. F., K. B. Aubry, S. W. Buskirk, L. Jack Lyon, and W. J. Zielinski, eds. The scientific basis for conserving forest carnivores: American marten, fisher, lynx, and wolverine in the western United States. Gen. Tech. Rep. RM-254. Fort Collins, CO: USDA For. Serv. Rocky Mountain For. and Range Exp. Sta. 183 pp.
- Macfarlane, D. 1994. National Forest System status information: forest carnivore data from National Forest System lands in the western United States (Appendix C). Pages 176-184, *in* Ruggerio, L. F., K. B. Aubry, S. W. Buskirk, L. Jack Lyon, and W. J. Zielinski, eds. The scientific basis for conserving forest carnivores: American marten, fisher, lynx, and wolverine in the western United States. Gen. Tech. Rep. RM-254. Fort Collins, CO: U. S. Dept. Agric., Rocky Mountain For. and Range Exp. Sta. 183 pp.
- Mackie, R. S. 1997. Trading Beyond the Mountains: the British fur trade on the Pacific, 1793-1843. UBC Press, Vancouver. 420 pp.
- Mannan, R. W., E. C. Meslow, and H. W. Wight. 1980. Use of snags by birds in Douglas-fir forests, western Oregon. J. Wildl. Manage. 44:787-797.
- Mead, R. A. 1994. Reproduction in Martes. Pages 404-422 in Buskirk, S. W., A. S. Harestad, M. G. Raphael, and R. A. Powell, eds. Martens, sables, and fishers: biology and conservation. Cornell Univ. Press, Ithaca, NY.
- Melquist, W.E. 1997. Furbearers. Study III, Job 1. Progress Report, Project W-170-R-20. Idaho Fish and Game. 36 pp.
- Morse, W. B. 1961. Return of the fisher. Am. For. 64(4):24-26,47.
- Obbard, M. E., J. G. Jones, R. Newman, A. Booth, A. J. Satterthwaite, G. Linscombe. 1987. Furbearer harvests in North America. Pages 1007-1034, *in* Novak, M., J. A. Baker, M. E. Obbard, B. Malloch.(eds.) Wild

September 1998

Furbearer Management and Conservation in North America. Ontario Ministry of Natural Resources and the Ontario Trappers Association. 1150 pp.

- Ohmann, J. L., W. C. McComb, and A. Z. Zumrawi. 1994. Snag abundance for primary cavity-nesting birds on non-federal lands in Oregon and Washington. Wildl. Soc. Bull. 22:607-620.
- Pack, J. C., and J. I. Cromer. 1981. Reintroduction of fisher in West Virginia. Pages 1431-1442, *in* J. A. Chapman and D. Pursley, eds. Proc. First Worldwide Furbearer Conf., Frostburg, MD.
- Paragi, T. F. 1990. Reproductive biology of female fishers in south-central Maine. M.S. thesis, Univ. of Maine, Orono.
- ———, S. M. Arthur, and W. B. Krohn. 1994. Seasonal and circadian activity patterns of female fishers, *Martes pennanti*, with kits. Can. Field Naturalist 108:52-57.
- _____, ____, ____, 1996. Importance of tree cavities as natal dens for fishers. N. J. Appl. For. 13:79-83.
- ———, W. B. Krohn, and S. M. Arthur. 1994. Using estimates of fisher recruitment and survival to evaluate population trend. Northeast Wildl. 51:1-11.
- Payne, N.F. and R.D. Taber. 1974. Current status of 10 uncommon birds and mammals in Snoqualmie National Forest and vicinity. College of Forest Resources, Univ. Of Washington, Seattle. 73 pp.
- Petersen, L. R., M. A. Martin, and C. M. Pils. 1977. Status of fishers in Wisconsin. Wisconsin Dept. Nat. Resources Rep. 92:1-14.
- Pittaway, R. J. 1978. Observations on the behaviour of the fisher (Martes pennanti) in Algonquin Park, Ontario. Le Naturaliste Canadien 105: 487-489.

- Powell, R. A. 1977. Hunting behavior, ecological energetics, and predator-prey community stability of the fisher (*Martes pennanti*). Ph.D. dissertation, Univ. of Chicago. 132 pp.
- ———. 1979. Fishers, population models and trapping. Wildl. Soc. Bull. 7:149-54.
- ———. 1980. Fisher arboreal activity. Can. Field-Natur. 94:90-91.
- ———. 1981. Martes pennanti. Mammalian Species. 156:1-6.

- . 1994. Scale and habitat selection by fishers in Upper Peninsula Michigan in winter. J. Mamm. 75:349-356.
- and W. J. Zielinski. 1994. Fisher. Pages 38-73 in Ruggerio, L. F., K. B. Aubry, S. W. Buskirk, L. Jack Lyon, and W. J. Zielinski, eds. The scientific basis for conserving forest carnivores: American marten, fisher, lynx, and wolverine in the western United States. Gen. Tech. Rep. RM-254. Fort Collins, CO: U. S. Dept. Agric., Rocky Mountain For. and Range Exp. Sta. 183 pp.

^{------ . 1984.} Fisher, Martes pennanti, scent marking behavior. Can. Field-Natur. 98:57.

- Powell, S. M., E. C. York, J. L. Scanlon, T. K. Fuller. 1997. Fisher maternal den sites in central New England. Pages 265-278, *in* G. Proulx, H.N. Bryant, and P. M. Woodard, eds. Martes: taxonomy, ecology,techniques, and management. Provincial Museum of Alberta, Edmonton.
- Proulx, G., A. J. Kolenosky, M. J. Badry, R. K. Drescher, K. Seidel, and P. J. Cole. 1994. Post-release movements of translocated fishers. Pages 197-203 in Buskirk, S. W., A. S. Harestad, M. G. Raphael, and R. A. Powell, eds. Martens, sables, and fishers: biology and conservation. Cornell Univ. Press, Ithaca, NY.
- Pyne, S. J. 1982. Fire in America: a cultural history of wildland and rural fire.Princeton University Press, Princeton, NJ. 654 pp.
- Raine, R. M. 1983. Winter habitat use and responses to snow of fisher (Martes pennanti) and marten (Martes americana) in southeastern Manitoba. Can. J. Zool. 61:25-34.

- Rosenberg, K. V., and R. G. Raphael. 1986. Effects of forest fragmentation on vertebrates in Douglas-fir forests. Pages 263-272, *in* Verner, J., Morrison, M. L., Ralph, C. J., eds. Wildlife 2000: Modeling habitat relationships of terrestrial vertebrates. Univ. of Wisconsin Press, Madison
- Roy, K. D. 1991. Ecology of reintroduced fishers in the Cabinet Mountains of northwest Montana. M. S. thesis, Univ. of Montana, Missoula. 94 pp.
- Ruediger, B. 1994. Wolverine, Lynx and Fisher Habitat and Distribution Maps, Draft Hierarchical Approach and Draft Conservation Strategies (unpublished memo with attachments, 14 Sep 1994). Western Forest Carnivore Committee, USDA Forest Service.
- Ruggiero, L. F., K. B. Aubry, S. W. Buskirk, L. Jack Lyon, and W. J. Zielinski, eds. 1994a. The scientific basis for conserving forest carnivores: American marten, fisher, lynx, and wolverine in the western United States. Gen. Tech. Rep. RM-254. Fort Collins, CO: U. S. Dept. Agric., Rocky Mountain For. and Range Exp. Sta. 183 pp.
- ———, Zielinski, W. J., K. B. Aubry, S. W. Buskirk, and L. Jack Lyon. 1994b. A conservation assessment framework for forest carnivores. Pages 1-6, *in*: Ruggiero, L. F., K. B. Aubry, S. W. Buskirk, L. Jack Lyon, and W. J. Zielinski, eds. The scientific basis for conserving forest carnivores: American marten, fisher, lynx, and wolverine in the western United States. Gen. Tech. Rep. RM-254. Fort Collins, CO: U. S. Dept. Agric., Rocky Mountain For. and Range Exp. Sta. 183 pp.
- Scheffer, V. B. 1938. Notes on wolverine and fisher in the state of Washington. Murrelet 19:8-10.

- Schmidt, G., and R. Baird. 1995. The reintroduction of pine martens and fishers to Riding Mountains National Park. Page 52 in Abstracts of presentations, Second International Martes Symposium, Edmonton, Alberta.
- Schonewald-Cox, C. M., S. M. Chambers, B. MacBryde, and L. Thomas, eds. 1983. Genetics and Conservation: a reference for managing wild animal and plant populations. Benjamin/Cummings Publ. Co. Inc., Menlo Park, CA.

- Seglund, A. E. 1995. The use of resting sites by the Pacific fisher. M. S. thesis, Humboldt St. Univ., Arcata, CA. 66 pp.
- Selander, R. K. 1966. Sexual dimorphism and differential niche utilization in birds. Condor 68:113-151.
- Self, S. E. and S. J. Kearns. 1992. Pine marten and pacific fisher study, phase 2 report, 10 June 1992. Redding, California Wildland Resource Managers. Unpubl. Rep. 34pp.
- Serfass, T., R. Brooks, W. Tzilkowski, D. Mitcheltree, and T. Hardisky. 1996. Pennsylvania fisher reintroduction project. Penn. Game Comm., Bur. Wildl. Manage., Res. Div., Proj. Annu. Job Rep. 2 pp.
- Seton, E. T. 1929. Life XXXII-The Fisher. Pp. 452-479 in Bears, Coons, Badgers, Skunks, and Weasels. Lives of game animals. Vol II, Part II. Doubleday, Doran & Co., New York.
- Shaffer, M. 1987. Minimum viable populations: coping with uncertainty. Pages 69-86 in Soule, ed. Viable populations for conservation. Cambridge Univ. Press, NY. 189 pp.
- Sheets, T. J. 1993. Washington State Pine Marten Distribution. Washington Department of Wildlife, Olympia. 61 pp.
- Spies, T.A. and S.P. Cline. 1988. Coarse woody debris in forests and plantations of coastal Oregon. Pp. 5-24 in Maser, C., R. F. Tarrant, J. M. Trappe, J. F. Franklin. (tech. eds.) From the forest to the sea: a story of fallen trees. Gen. Tech. Rep. PNW-GTR-229. USDA Forest Service Pacific Northwest Research Station, Portland. 153 pp.
- ———, J. F. Franklin, and T. B. Thomas. 1988. Coarse woody debris in Douglas-fir forests of western Oregon and Washington. Ecology 69:1689-1702.
- Strickland, M. A., and C.D. Douglas. 1981. The status of fisher in North America and its management in southern Ontario. Pp 1443-1458, *in* J. A. Chapman and D. Pursely, eds. Proc. Worldwide Furbearer Conf., Frostburg, MD.

 - ——, M. Novak, and N. P. Hunzinger. 1982. Fisher. Pages 586-598 *in* J. A. Chapman and G. A. Feldhamer, eds. Wild mammals of North America: biology, management, and economics. Johns Hopkins Univ. Press, Baltimore, MD.
- Suckley, G., and J. G. Cooper. 1860. The natural history of the Washington and Oregon territory. Bailliere Brothers, New York. 399 pp.
- Taylor, W. P., and W. T. Shaw. 1927. Mammals and birds of Mount Rainier National Park. U. S. Gov. Printing Office, Washington, D. C. 249 pp.

------, and ------. 1929. Provisional list of land mammals of the state of Washington. Occas. Papers Charles R. Conner Museum No. 2. Washington State University, Pullman, WA.

Thomas, J. W., M. G. Raphael, R. G. Anthony, E. D. Forsman, A. G. Gunderson, R. S. Holthausen, B. G. Marcot, G. H. Reeves, J. R. Sedell, and D. M. Solis. 1993. Viability assessments and management considerations for species associated with late-successional and old-growth forests of the Pacific Northwest. USDA Forest Service, Portland, OR. 523 pp.

- Thomasma, L. E., T. Drummer, and R. O. Peterson. 1991. Testing the habitat suitability index model for the fisher. Wildl. Soc. Bull. 19:291-97.
 - . 1996. Winter habitat selection and interspecific interactions of American martens (*Martes americana*) and fishers (*Martes pennanti*) in the McCormick Wilderness and surrounding area. PhD. Dissertation, Michigan Technological University. 130 pp.
- USDA Forest Service and USDI Bureau of Land Management. 1994. Final supplemental enironmental impact statement on management of habitat for late-successional and old-growth forest related species within the range of the northern spotted owl. USDA Forest Service, Portland, OR.
- USDI Fish and Wildlife Service. 1991. Notice of petition finding: 90-day petition finding for the Pacific fisher. Federal Register 5:1159-1161.
- ————. 1996. 90-day finding for a petition to list the fisher in the western United States as threatened. Federal Register 61(42):8016-8018.
- Wallace, K. and R. Henry. 1985. Return of the Catskill native. The Conservationist 40(3):17-19.
- Washington Department of Natural Resources. 1996. Habitat Conservation Plan. Washington Dept. Natur. Resour., Olympia.
- Weckwerth R. P., and P. L. Wright. 1968. Results of transplanting fishers in Montana. J. Wildl Manage. 32:977-80.
- Weir, R. D. 1995. Diet, spatial organization, and habitat relationships of fishers in South-Central British Columbia. M. S. Thesis, Simon Fraser Univ., Burnaby, BC. 139 pp.
- Wright, P. L., and M. W. Coulter. 1967. Reproduction and growth in Maine fishers. J. Wildl. Manage. 31:70-87.
- Yocum, C. F., and M. T. McCollum. 1973. Status of the fisher in northern California, Oregon and Washington. Calif. Fish & Game 59:305-309.
- York, E. C. 1996. Fisher population dynamics in north-central Massachusetts. M.S. Thesis., University of Massachusetts, Amherst. 121 pp.
- Zielinski, W. J., R. H. Barrett, and R. L. Truex. 1997a. Southern Sierra Nevada fisher and marten study: progress report IV. Unpubl. progress rep., USDA Forest Service, PSW Res. Sta., Arcata, CA.
- ———, C. R. Carroll, and L. Campbell. 1996. Using survey data to monitor population status and develop habitat models for fishers and other mesocarnivores. Progress Report I, 1 July - 15 Nov 1996. USDA Forest Service, Pacific Southwest Research Station, Arcata, CA.
- ———, and T. E. Kucera. 1995. American marten, fisher, lynx, and wolverine: survey methods for their detection. USDA Forest Service, Gen. Tech. Rep. PSW-GTR-157. 164 pp.
- ———, ——, and R. H. Barrett. 1995a. The current distribution of the fisher, Martes pennanti, in California. Calif. Fish and Game 81:104-112.
- ———, G. A. Schmidt, and K. N. Schmidt. 1994. Six Rivers National Forest fisher study: progress report. USDA For. Serv., PSW Res. Sta. unpubl. rep. 20 pp.

- ----, -----, -----, 1995b. Six Rivers National Forest fisher study: progress report II. USDA For. Serv., PSW Res. Sta. unpubl. rep. 29 pp.
- ——, W. D. Spencer, and R. D. Barrett. 1983. Relationship between food habits and activity patterns of pine martens. J. Mammal. 64:387-396.
- ——, and R. L. Truex. 1995. Distinguishing tracks of closely-related species: marten and fisher. J. Wildl. Manage. 59:571-579.
- , ——, C. V. Ogan, and K. Busse. 1997b. Detection surveys for fisher and American martens in California, 1989-1994: summary and interpretations. Pages 372-392 *in* G. Proulx, H. N. Bryant, and P.M. Woodard, eds. Martes: taxonomy, ecology, techniques, and management. Provincial Museum of Alberta, Edmonton, Alberta, Canada.

PERSONAL COMMUNICATIONS

Buck Adamire Trapper Port Angeles, Washington

Keith Aubry Research Wildlife Biologist USDA Forest Service Pacific Northwest Research Station Olympia, Washington

Larry Cooper State Furbearer Coordinator Oregon Dept. of Fish and Wildlife Portland, Oregon

Anna Fontana Regional Biologist Ministry of Environment, Wildlife and Parks Wildlife Branch Cranbrook, British Columbia

Brian Giddings State Furbearer Coordinator Montana Dept. of Fish,Wildlife, and Parks Helena, Montana

Grant Gunderson USDA Forest Service Region 6 Portland, Oregon

Richard E. Johnson Charles R. Conner Museum Washington State University Pullman, Washington Jeffrey L. Jones, Regional Ecologist USDA Forest Service, Northern Region Missoula, Montana

William B. Krohn, Leader Maine Coop. Fish & Wildlife Research Unit University of Maine Orono, Maine

Robert Luce Wildlife Biologist Wyoming Game and Fish Landers, Wyoming

R. Lee Lyman Department of Anthropology University of Missouri Columbia, MO

Wayne Melquist State Nongame Wildlife Manager Idaho Dept. of Fish and Game Boise, Idaho

Fred Stangle Biology Department Midwestern State University Witchita Falls, Texas

William Zielinski Research Wildlife Biologist USDA Forest Service Pacific Southwest Research Station Arcata, California

No.	Location	County	Date	Year	Collector/Citation ^a	Museum No. ^b
1	S. base of Mt. Adams, near Trout Lake	Klickitat		1894	C. Wegstein	USNM #63907
2	S. base of Mt. Adams, near Trout Lake	Klickitat	11 Dec.	1894	D. Kaegi	USNM #69972
3	Mt. Adams, Trout Lake	Klickitat		1894	C. Wegstein	USNM #64758
4	S. base of Mt. Adams, near				8	
	Trout Lake	Klickitat		1894	C. Wegstein	USNM #63908
5	Mt. Adams, Trout Lake	Klickitat		1894	C. Wegstein	USNM #64759
6	Base of Mt. Adams, near Trout Lake	Klickitat	17 Jan	1895	D. Kaegi	USNM #70541
7	Mt Adams Trout Lake	Klickitat	22 Dec	1895	D. Kaegi	USNM #76616
8	S hase of Mt Adams near	Ritekitat	22 Dec.	1075	D. Kuegi	001010
0	Trout Lake	Klickitat	2 Mar.	1895	D. Kaegi	USNM #70928
9	S. base of Mt. Adams, near Trout Lake	Klickitat	Feb.	1895	D. Kaegi	USNM #70927
10	Olympic Peninsula, Lake Cushman region	Mason		1895	R. Harps	UNSM #268769
11	Mt. Adams, Trout Lake	Klickitat	5 Dec.	1896	P. Schmid	USNM #81843
12	Mt. Adams, Trout Lake	Klickitat	23 Mar.	1896	D. Kaegi	USNM #77873
13	Mt. Adams, Trout Lake	Klickitat	2 Jan.	1896	D. Kaegi	USNM #76615
14	Mt. Adams, Trout Lake	Klickitat	29 Dec.	1896	P. Schmid	USNM #81951
15	Lake Cushman	Mason	18 Jan.	1896	T. Hayes	USNM #78410
16	Mt. Adams, Trout Lake	Klickitat	15 Jan.	1897	P. Schmid	USNM #87084
17	Mt. Adams, Trout Lake	Klickitat	31 Dec.	1897	P. Schmid	USNM #92113
18	Olympic Mts., Barnes Cr., Solduck Trail	Clallam	13 Oct.	1898	D. Elliot	FMNH #6342
19	Olympic Mountains, Solduck					
	Trail	Clallam	9 Oct.	1898	D. Elliot	FMNH #6341
20	Mt. Adams, Trout Lake	Klickitat	17 Jan.	1898	P. Schmid	USNM #92770
21	Lake Cushman	Mason	29 Jan.	1899	T. Hayes	USNM #96581
22	Lake Cushman	Mason	17 Feb	1899	T. Hayes	USNM #96582
23	Lake Cushman	Mason	9 Feb.	1899	T. Hayes	USNM #96580
24	Mt. Adams, Trout Lake	Klickitat	20 Jan.	1900	P. Schmid	USNM #99457
25	Mt. Adams, Trout Lake	Klickitat	10 Mar.	1900	P. Schmid	USNM #99652
26	Mt. Adams, Trout Lake	Klickitat	26 Jan.	1901	P. Schmid	USNM #107624
27	Hoodsport	Mason	6 May	1901	H. Finch	USNM #116653
28	Mt. Adams, Trout Lake	Klickitat	8 Mar.	1901	P. Schmid	USNM #108213
29	Mt. Adams, Trout Lake	Klickitat	24 Feb.	1902	P. Schmid	USNM #116480
30	Olympic Mts. Skokomish R.	Mason	20 Apr.	1902	K. Robbins	USNM #119959
31	Mt. Adams, Trout Lake	Klickitat	25 Feb.	1902	P. Schmid	USNM #116481
32	Olympic Mts. Skokomish R.	Mason	9 Mar.	1902	K. Robbins	USNM #119960

Appendix A. Fisher specimens collected in Washington.

No.	Location	County	Date	Year	Collector/Citation ^a	Museum No. ^b
33	Mt. Adams, Trout Lake	Klickitat	12 Apr.	1902	P. Schmid	USNM #116766
34	Olympic Mts. Skokomish R.	Mason	19 Mar.	1902	K. Robbins	USNM #119958
35	Olympic Mts. Skokomish R.	Mason	22 Nov.	1902	K. Robbins	USNM #119961
36	Olympic Mts. Skokomish R.	Mason	28 Mar.	1902	K. Robbins	USNM #119957
37	Hoodsport	Mason		1907	T. Rule	USNM #170607
38	Hoodsport	Mason	Mar.	1907	T. Rule	USNM #170606
39	Hoodsport	Mason		1908	T. Rule	USNM #17069
40	Hoodsport	Mason		1908	T. Rule	USNM #170608
41	Hoodsport	Mason	5 Dec.	1909	T. Rule	USNM #170610
42	Hoodsport	Mason	16 Dec.	1909	T. Rule	USNM #170611
43	Hoodsport	Mason	30 Dec.	1909	T. Rule	USNM #170612
44	Hoodsport	Mason	10 Feb.	1910	T. Rule	USNM #170615
45	Hoodsport	Mason	22 Jan.	1910	T. Rule	USNM #170613
46	Hoodsport	Mason	24 Mar.	1910	T. Rule	UNSM #170616
47	Hoodsport	Mason	29 Jan.	1910	T. Rule	USNM #170614
48	Olympic Ranger Sta., Glacier					
	Cr., 2 mi SE of Hoh River	Jefferson	Dec.	1919	W. Taylor	USNM #241949
49	Vance, 27 mi. SW of Iron Cr.	Skamania	5 Sept.	1923	W. Scalf	USNM #243790
50				before		
	near Olympia	Thurston	unknown	1947	G. Gibbs	USNM #3379
51		. .	1	before	D 1 1047	
	Iron Creek	Lew18	unknown	1947	Booth 1947	USFWS
52	Lilliwaup Swamp area, T23NR4WS11	Mason	Jan.	1969	G. Gray	UPSMNH #14784
53	3 mi. W of Orting, T19NR4ES34	Pierce	11 Dec.	1990	D. Robertson	UWBM #37530
54	Ft. Lewis T18NR02ES13	Pierce	Fall	1992	G. Sovie	WDFW-NHDB °
55	Calispell Peak, T34NR42ES9	Stevens	25 May	1994	S. Zender	WDFW-NHDB ^d

Appendix A. Fisher specimens (Cont'd)

^a see bibliography for Booth (1947).

^bMuseum and source acronyms include: USNM = U.S. National Museum of Natural History (Smithsonian Inst.); FMNH = Field Museum of Natural History, Chicago; USFWS = Bird and Mammal Collection, Fish and Wildlife Service, Washington ,D.C.; UPSMNH = University of Puget Sound Museum of Natural History; UWBM = University of Washington Burke Museum; WDFW-NHDB = Washington Department of Fish and Wildlife, Natural Heritage Database records.

^c Photograph of trapped animal is on file at WDFW.

^dCarcass of fisher identified by ear tag as animal released in Montana reintroduction project.

Location	County	Date	Year	Type ^a	Reported by	Rel. ^b	Reference ^c
Olympic N.P.,							
T25NR5WS19	Jefferson	-	1896	Trapping	F. Reid	2	Aubry & Houston
Mt. Rainier N.P., Nisqually Valley	Pierce	-	1897	Trapping	C. Merriam	3	Aubry & Houston
Palix or Nemah River							
watershed	Pacific	-	1903	Trapping	J. Prior	-	B. Adamire
Mt. Rainier N.P., Below Longmire	Pierce	-	1904	Trapping	C. Stoner	3	Aubry & Houston
Cosmopolis, Water	Grays						
Reservoir T17NR9WS23	Harbor		1909	Trapping	L. Fairbrother	2	Aubry & Houston
Lower Elwha Dam	Clallam	-	<1910	Trapping	B. Everett	-	B. Adamire
Palix or Nemah River							
watershed	Pacific	-	1910	Trapping	J. Prior	-	B. Adamire
Stream near Neah Bay	Clallam	-	1910s	Trapping	J. Cowans	-	B. Adamire
Mt. Rainier Nat'l Park	Pierce	-	1912	Trapping	S. Estes	-	Taylor & Shaw 1927
Olympic N.F.,							
T24NR5WS36	Mason	Jan.	1912	Trapping	R. Harps	1	Aubry & Houston
Mt. Rainier N.P.	Pierce	-	1912	Trapping	C. Stoner	-	Taylor & Shaw 1927
Palix River or Nemah							
River watershed	Pacific	24 Mar	1913	Trapping	J. Prior	-	B. Adamire
Wenatchee N.F., Hyas	T7		1015	- ·		2	
Lake, T24NR14ES1/	Kittitas	-	1915	Trapping	M. Nordrum	2	Aubry & Houston
Bumping Lake	Yakima	-	1915	Tracks	J. Nelson	-	Scheffer 1938
Okanogan N.F., T38NR20ES9	Okanogan	-	1917	Trapping	H. Mason	2	Aubry & Houston
Queets River W. of Clearwater, narrow spit							
below Copalis	Jefferson	Winter	1919	Trapping	Cantwell	-	Scheffer 1995
Near the town of Tieton	Yakima	-	1919	Trapping	H. Beebe	2	Aubry & Houston
Crooked Cr., E. side of Lake Ozette	Mason	-	1920s	Trapping	Arbriter	-	B. Adamire
Hoko River	Clallam	-	1920s	Trapping	S. Iverson	-	B. Adamire
Near old coal mine along							
beach in Pysht area	Clallam	-	1920s	Trapping	Fernandez	-	B. Adamire
Lake Sutherland	Clallam	-	1920s	Trapping	O. Hansen	-	B. Adamire
Wolf R. and Grand Cr.			1915-				
T28NR4WS18	Clallam	-	1925	Trapping	g A.B.Cameron	-	B. Adamire
N of Gold Mt. T24NR1W	Kitsap	_	-	Trapping	H. Dahl	_	B. Adamire
Oak Ponds S. of Hintzville, T24NR2W	Kitsap	-	-	Trapping	Carlson	-	B. Adamire
	Gravs						· ·
E. Fork of Quinault	Harbor	-	1921	Trapping	E. & I. Olson	-	Scheffer 1995

Appendix B. Sighting, tracks, and trapping reports of fishers in Washington.

Location	County	Date	Year	Type ^a	Reported by	Rel. ^b	Reference ^c
Crooked Cr. between							
Lake Ozette & Dickey	C 1 11		1025	— ·		•	
		-	1925	Trapping	G. Fargo	2	Aubry & Houston
Trout Lake	Klickitat	-	1925	Trapping	D. Smith	-	Scheffer 1957
Clallam Bay	Clallam	-	1926	Trapping	C. Keller	-	Scheffer 1995
Big Creek	Jefferson ?	-	1929	Tracks	J. Alloid	-	Scheffer 1938
Seaview	Pacific	-	1930	Trapping	J. Petit	-	Scheffer 1957
Methow Valley just S. of Canadian border	Okanogan	-	1933	Trapping	R. Johnson	-	Scheffer 1938
Little Wenatchee River, above Lake Wenatchee	Chelan	_	1936	Tracks	L Dickinson	_	Scheffer 1938
Queets River	Iefferson	Winter	1937	Tracks	T Anderson	_	Scheffer 1995
Big Log N Fork of the	Jerrenson	vv inter	1757	Tueks	1.7 mdc150m		Scherrer 1775
Skokomish	Mason	-	1938	Sighting	R. Harps	-	Scheffer 1995
Olympic Mts.		18 April	1939	Trapping	J. Allen	-	Scheffer 1957
Lake Whatcom	Whatcom	Fall	1939	Sighting	B. Austen	-	Scheffer 1957
Barnes Creek, Lake							
Crescent	Clallam	-	1940	Sighting	NPS	-	Scheffer 1995
Dragoon Cr.							
T29NR42ES34	Spokane	Nov/Dec	1946	Trapping	J. Berry	-	J. Berry
Hoh River rd., T26NR11WS30	Jefferson	2 Aug.	1949	Sighting	M. Johnson	3	Aubry & Houston
Okanogan N.F.,							· · ·
Winthrop rd.,							
T39NR21ES34	Okanogan	-	1955	Sighting	Unknown	4	Aubry & Houston
Mt. Baker/Snoqualmie N.F., T30NR9ES1	Snohomish	-	1958	Sighting	J. Vance	4	Aubry & Houston
Cedar River,							
T22NR6ES24	King	July	1963	Sighting	H. Beecher	4	Aubry & Houston
Stevens Creek,	Grays						
T20NR11WS12	Harbor	-	1963	Sighting	H. Beecher	4	Aubry & Houston
Slide Lake, T34NR11ES14	Skagit	Sum.	1965	Sighting	B. Bosman	4	Aubry & Houston
Wenatchee N.F.							
T16NR11ES34	Yakima	1 Sept.	1966	Sighting	B. Van Reenan	4	Aubry & Houston
Wenatchee N.F., T16NR11ES34	Yakima	25 July	1966	Sighting	B. Van Reenan	4	Aubry & Houston
Olympic N.P., T23NR9WS19	Grays Harbor	-	1967	Sighting	Unknown	6	Aubry & Houston
Olympic N.P., Klahhane							
ridge, T29NR6WS29	Clallam	Jun.	1969	Sighting	Unknown	3	Aubry & Houston
Mt. Baker/Snoqualmie N.F., T27NR10ES35	Snohomish	-	1969	Tracks	R. Breeden	5	Aubry & Houston
· · · · · · · · · · · · · · · · · · ·							

Location	County	Date	Year	Type ^a	Reported by	Rel. ^b	Reference ^c
Near Lake Quinault, T23NR9WS19	Grays Harbor	-	1969	Sighting		_	Yocom & McCollum 1973
Olympic N.P., T28NR6WS11	Clallam	June	1969	Sighting		-	Yocom & McCollum 1973
Olympic N.F., T25NR3WS16	Jefferson	Sept.	1971	Sighting	Unknown	4	Aubry & Houston
Near Sultan, T28NR9ES6	Snohomish	Winter	1971	Trapping	R. Akers	2	Aubry & Houston
N. Cascades N.P., T36NR11ES1	Skagit	July	1971	Sighting	Swickard	4	Aubry & Houston
Wenatchee N.F., T16NR11ES34	Yakima	4 July	1971	Sighting	B. Van Reenan	4	Aubry & Houston
Near Gold Bar, T27NR9ES6	Snohomish	-	1971	Sighting	R. Reynolds	4	Aubry & Houston
Olympic N.F., T30NR11WS3	Clallam	Oct.	1971	Sighting	Unknown	4	Aubry & Houston
Near Gold Bar, T28NR9ES31	Snohomish	-	1971	Sighting	N. Payne, R. Taber	-	WDFW-NDHB
Olympic N.P., T24NR3WS34	Mason	Apr.	1972	Sighting	Unknown	4	Aubry & Houston
Sultan Basin, Anderson creek, T27NR9ES25	Snohomish	-	1972	Sighting	E. Isco	4	Aubry & Houston
Mt. Baker/Snoqualmie N.F., T30NR8ES19	Snohomish	_	1973	Sighting		-	Payne & Taber 1974
Wenatchee N.F., T13NR12ES2	Yakima	10 Nov.	1973	Tracks	M. Wagner	5	Aubry & Houston
Bald Mt., T29NR8ES12	Snohomish	Fall	1973	Sighting	R. Kelley	4	Aubry & Houston
Wenatchee N.F., T22NR17ES35	Chelan Kittitas	-	1973	Sighting	G. Cook	4	Aubry & Houston
Lower Skokomish river, T21NR4WS22	Mason	Feb.	1973	Sighting	Unknown	4	Aubry & Houston
Mt. Baker/Snoqualmie N.F., T30NR7ES13	Snohomish	Fall	1973	Sighting	R. Kelley	4	Payne & Taber 1974
Olympic N.F., T23NR11WS1	Grays Harbor	-	1973	Sighting	M. Miller	3	Aubry & Houston
Mt. Baker/Snoqualmie N.F., T26NR10ES6	King	-	1974	Tracks	D. Bergstrom	5	Aubry & Houston
Green River Road		-	1974	Sighting	M. Rasmussen	6	Aubry & Houston
Mt. Rainier N.P., Ohanapecosh hot springs, T15NR10ES4	Pierce	26 Jan.	1974	Sighting	D. Shannon	4	Aubry & Houston
Mt. Rainier N.P., T17NR10ES9	Pierce	4 Oct.	1974	Sighting	J. Chaffen	4	Aubry & Houston

Location	County	Date	Year	Type ^a	Reported by	Rel. ^b	Reference ^c
Wenatchee N.F., T16NR11WS8	Yakima	Nov.	1975	Sighting	R. Beaman	3	Aubry & Houston
Gifford Pinchot N.F., T6NR7ES25	Skamania	-	1975	Sighting	Unknown	4	Aubry & Houston
Big Creek Campground, T23NR4WS16	Mason	-	1975	Sighting	B. Goodpaster	4	Aubry & Houston
Mt. Rainier N.P., T15NR8ES7	Pierce	35991	1975	Sighting	J. Farr	6	Aubry & Houston
Mt. Rainier N.P., T17NR10ES31	Pierce	5 Aug.	1975	Sighting	J. Van Horn	3	Aubry & Houston
Elwha River Valley, T30NR7WS32	Clallam	-	1975	Sighting	G. Kish	3	Aubry & Houston
Wenatchee N.F., T15NR11ES4	Yakima	11 Aug.	1975	Sighting	M. Boltz	4	Aubry & Houston
Snoqualmie River, T23NR9ES18	King	Winter	1976	Sighting	F. Lawrence	4	Aubry & Houston
Yakima River, T20NR14ES25	Kittitas	-	1976	Sighting	H. Beecher	4	Aubry & Houston
Kaniksu N.F., T38NR45ES13	Pend Oreille	May	1977	Sighting	D. Weatherman	-	WDFW-NHDB
Olympic N.F., T23NR10WS1	Grays Harbor	2 Nov.	1977	Sighting	K. Pearson	4	Aubry & Houston
Okanogan N.F., T38NR20ES17	Okanogan	7 July	1977	Sighting	J. Hook	4	Aubry & Houston
Mt. Rainier N.P., T16NR9ES2	Pierce	6 July	1977	Sighting	S. Sabel	6	Aubry & Houston
Mt. Rainier N.P., T17NR10ES31	Pierce	20 may	1977	Tracks	J. Van Horn	5	Aubry & Houston
Colville N.F., T39NR44ES35	Pend Oreille	12 July	1978	Sighting	R. Waitt	4	Aubry & Houston
Colville N.F., T37NR44ES12	Pend Oreille	16 Oct	1978	Sighting	T. Burke, L. Dubbels	4	Aubry & Houston
Colville N.F., T38NR43ES12	Pend Oreille	10 July	1978	Sighting	R. Waitt	4	Aubry & Houston
N. Cascades N.P., T38NR13ES36	Whatcom	1 Dec.	1978	Tracks	T. Buller	5	Aubry & Houston
2 mi. SW of Port Angeles, T30NR6WS16	Clallam	-	1978	Sighting	B. Adamire	3	Aubry & Houston
Gifford Pinchot N.F., T14NR10ES31	Lewis	July	1979	Sighting	P. Miller	4	Aubry & Houston
Okanogan N.F., T38NR20ES9	Okanogan	-	1979	Sighting	J. Hook	4	Aubry & Houston
Lake Chelan Nat. Rec. area,T34NR16ES21	Chelan	22 Aug.	1980	Sighting	R.C.& S.Williams	4	Aubry & Houston

Location	County	Date	Year	Type ^a	Reported by	Rel. ^b	Reference ^c
N. Cascades N.P., T34NR14ES14	Chelan	12 Aug.	1980	Sighting	S. Budelier	4	Aubry & Houston
T22NR5WS9	Mason	-	1980	Sighting	D. Laney	-	WDFW-NHDB
Colville Indian Res., T33NR35ES33	Ferry	Summer	1981	Sighting	R. Lawrence	6	Aubry & Houston
Olympic N.P., T29NR6WS1	Clallam	June	1981	Sighting	J. O'Neil	-	WDFW-NHDB
Stickney Ridge, NE of Sultan, T28NR9ES14	Snohomish	Nov.	1981	Sighting	B. Graham	6	Aubry & Houston
N. Cascades N.P., T35NR16ES34	Chelan	10 Jun.	1981	Sighting	M. Zichlinsky	4	Aubry & Houston
Kaniksu N.F., T37NR45ES3	Pend Oreille	Jan.	1982	Tracks	M. Cook	5	Aubry & Houston
Makah Indian Reservation, T33NR15WS15	Clallam	Aug.	1982	Sighting	M. Tupper	3	Aubry & Houston
Kaniksu N.F., T38NR45ES22	Pend Oreille	Nov.	1982	Sighting	L. Lyons	4	Aubry & Houston
Weyerhaueser's High Yield Forest Near Eatonville, T16NR5ES16	Pierce	Oct.	1983	Sighting	B. Murray	6	Aubry & Houston
Olympic N.P., T24NR11WS20	Jefferson	29 Oct.	1983	Sighting	H. Beecher	3	Aubry & Houston
Olympic N.F., T24NR4WS21	Mason	30 May	1983	Sighting	D. Spiker	3	Aubry & Houston
Olympic N.P., Boundary, T24NR11WS22	Jefferson	4 Nov.	1983	Sighting	D. Busco	3	Aubry & Houston
Wenatchee N.F., T18NR12ES10	Yakima	Sept.	1983	Sighting	B. Horton	4	Aubry & Houston
Olympic N.P., T27NR11WS5	Jefferson	Apr.	1983	Sighting	K. Smith	4	Aubry & Houston
Okanogan N.F., T37NR17ES18	Whatcom	18 Oct.	1984	Tracks	K. Williams	5	Aubry & Houston
Crown Zellerbach Co. Lands, T9NR7WS9	Wahkiakum	Jan.	1984	Sighting	K. Niemi	4	Aubry & Houston
Colville N.F., T65NR44ES30	Pend Oreille	3 Feb.	1984	Sighting	R. Fosback	3	Aubry & Houston
Weyerhaeuser's High Yield Forest Near Eatonville.,							
T16NR5ES16	Pierce	July	1984	Sighting	B. Murray	6	Aubry & Houston
Gifford Pinchot N.F., T10NR7ES33	Skamania	Nov.	1984	Tracks	J. Dobbins	5	Aubry & Houston

Location	County	Date	Year	Type ^a	Reported by	Rel. ^b	Reference ^c
Mt. Baker/Snoqualmie							
N.F., Ruth creek rd., .8 km E of Mt Baker Hwy	Whatcom	15 Aug	1984	Sighting	D Naas	4	Aubry & Houston
W. Branch Wynoochee	Gravs	15 Mug.	1704	Signing	D. Maas		Rubly & Houston
R.,T23NR7WS21	Harbor	July	1985	Sighting	J. Webster	3	Aubry & Houston
N. Cascades N.P., below							
skagit queen camp on	Class aid	15 1.1.	1095	Cichtin a	I Caraith	4	Aulum & Hauston
Olympic N P	Skagit	15 July	1985	Signung	L. Smith	4	Aubry & Houston
T26NR7WS35	Jefferson	23 Aug.	1985	Sighting	R. & J. Bentley	6	Aubry & Houston
S. Fork of Skokomish R.,		~			¥		
T21NR4WS9	Mason	Fall	1985	Sighting	S. Graham	4	Aubry & Houston
Colville N.F.,		- •	1005	a : 1.:	БИ		
<u>139NR44ES30</u>	Pend Oreille	5 Aug.	1985	Sighting	D. Horn	4	Aubry & Houston
Side between Lilliwaup							
and Eldon	Mason	30 Aug.	1986	Sighting	E. Ballsmith	6	Aubry & Houston
Salmon River,							
T24NR12W	Jefferson	Fall	1986	Sighting	A. Boom	6	Aubry & Houston
Dickey River,	Clallam	Oat	1096	Sighting	I Cleaner	6	Aubry & Houston
Olympic N P	Clanam	001.	1980	Signing	J. Closher	0	Aubry & Houston
T28NR7WS13	Clallam	2 Oct.	1987	Sighting	M. Jensen	4	Aubry & Houston
Mt. Rainier N.P.,							¥
Fryingpan Cr. Trail	Pierce	17 July	1987	Sighting	M. Beasley	4	Aubry & Houston
N. Cascades N.P., Macallister Camp	Skagit	May	1987	Sighting	A Morke	3	Aubry & Houston
Olympic N.P.,	Shugh	ivitaj	1707	Digitting		5	
T28NR6WS18	Clallam	1 Oct.	1987	Sighting	M. Jensen	-	WDFW-NHDB
Mt. Baker/Snoqualmie							
N.F., T39NR7ES14	Whatcom	27 July	1987	Sighting	D. Jones	4	Aubry & Houston
Peterman Hill, S. Of Morton, T12NR4ES10	Lowie		1087	Tranning	S Curry	2	Aubry & Houston
Wenatchee N F	LCWIS		1907	mapping	S. Curry	2	Addry & Houston
T28NR18ES34	Chelan	12 Sept.	1988	Sighting	M. Davis	4	Aubry & Houston
Colville N.F.,							
T38NR44ES18	Pend Oreille	15 Sept.	1988	Sighting	Ralph	4	Aubry & Houston
Gold Hill Area,	01	E-11	1000		D. K. II.	C	
138INK25E89	Okanogan	Fall	1988	Signting	P. Kelly	0	Aubry & Houston
T34NR34ES32	Ferry	Aug.	1988	Sighting	unknown	6	Aubry & Houston
Skokomish Indian Res.	*	Ŧ					
T21NR4WS14	Mason	Fall	1988	Sighting	A. Carey	4	Aubry & Houston

Location	County	Date	Year	Type ^a	Reported by	Rel. ^b	Reference ^c
Wenatchee N.F., T31NR19ES11	Chelan	15 Aug.	1988	Sighting	K. Carpenter	-	WDFW-NHDB
Junction of Middle and N. forks of Prince Creek	Chelan	15 Aug.	1988	Sighting	K. Carpenter	4	Aubry & Houston
Mt. Rainier N.P., Longmire, Along W. side of Shadows loop trail, near junct. with Rampart							
ridge trail	Pierce	1 Jun.	1988	Sighting	W. Ross	4	Aubry & Houston
Wenatchee N.F., T30NR20ES11	Chelan	Jun.	1989	Sighting	L. Moore	4	Aubry & Houston
Lundimo Meadows, T39NR33ES29	Ferry	20 Oct.	1989	Sighting	M. Thorniley	3	Aubry & Houston
Olympic N.P., T24NR5WS19	Mason	7 Apr.	1989	Tracks	B. Dalton	5	Aubry & Houston
N. Cascades N.P., Bridge Creek trail	Chelan	23 Sept.	1989	Sighting	J. Hughes	4	Aubry & Houston
Wenatchee N.F., T30NR20ES9	Chelan	Jun.	1989	Sighting	L. Moore	4	Aubry & Houston
Olympic N.P., T25NR5WS5	Jefferson	25 Jun.	1989	Sighting	M. Gracz	4	Aubry & Houston
Mcgregor Mt. USGS QUAD	Chelan	19 Jun.	1989	Sighting	L. Nothman	4	Aubry & Houston
Goode Mt. USGS QUAD	Chelan	31 July	1989	Sighting	J. Stant	4	Aubry & Houston
Olympic N.F., T28NR3WS32	Clallam	15 Jun.	1989	Sighting	C. Rodlend	4	Aubry & Houston
W. of Orting, T19NR4ES34	Pierce	11 Dec.	1990	Trapping	Brittell	-	WDFW-NHDB
Gifford Pinchot N.F., T11NR8ES7	Lewis	9 Jun.	1990	Sighting	L. Fitzner	4	Aubry & Houston
Wenatchee N.F., T26R18ES27	Chelan	1 Aug.	1990	Tracks	Rickman & Martin	5	Aubry & Houston
Near Bryan Butte, T30NR20ES2	Okanogan	1 Sept.	1990	Sighting	D. Humpfrey	4	Aubry & Houston
Wenatchee N.F., T30NR20ES2	Chelan	July	1990	Sighting	Moore & Belmont	4	Aubry & Houston
Wenatchee N.F., T21NR18ES8	Kittitas	23 July	1990	Tracks	T. Rickman & S. Martin	5	Aubry & Houston
Gifford Pinchot N.F., T14NR8ES16	Lewis	23 May	1990	Sighting	J. Kelso	4	Aubry & Houston
Mt. Rainier N.P., T15NR10ES4	Pierce	24 July	1990	Sighting	J. Swingle	6	Aubry & Houston
Mt. Baker/Snoqualmie N.F., T22NR10ES3	King	25 Aug.	1990	Sighting	A. Riley	3	Aubry & Houston

A man a maller D		امصحام مسلا		(0, 1) = (0, 1) = (0, 1)
	FIGUEL SIGNITING	tracks and	i trannina i	records (Liontid)
Appointin D.		, แนบเเว, นกน		
		, ,		

Location	County	Date	Year	Type ^a	Reported by	Rel. ^b	Reference ^c
Gifford Pinchot N.F., T10NR9ES16	Skamania	14 July	1991	Sighting	L. Smathers	-	WDFW-NHDB
E. Fork Dickey River, T29NR14WS31	Clallam	Apr.	1991	Sighting	R. Lien	4	Aubry & Houston
Olympic N.P., T28NR15WS21	Clallam	3 Aug.	1991	Sighting	M. Butler	4	Aubry & Houston
Gifford Pinchot N.F., T13NR7ES35	Lewis	8 Feb.	1991	Sighting	C. Dick	-	WDFW-NHDB
Mt. Baker/Snoqualmie N.F.,	King	15 Aug.	1991	Sighting	M. Barry	-	WDFW-NHDB
Wenatchee N.F., T13NR11ES1	Yakima	11 Mar.	1991	Sighting	L. Caruso	3	Aubry & Houston
Quinault Indian Res., T23NR11WS7	Grays Harbor	1 Apr.	1991	Sighting	M. Barlow	4	Aubry & Houston
HWY 112 W. of Joyce, T31NR9WS35	Clallam	16 May	1991	Sighting	D. Byrne	3	Aubry & Houston
Gifford Pinchot N.F., T14NR10ES15	Lewis	9 Jan.	1991	Tracks	M. Wagner	5	Aubry & Houston
Kaniksu N.F., T34NR45ES36	Pend Oreille	14 Aug.	1991	Sighting	L. Hatzell & C. Dalgren	_	WDFW-NHDB
Tornow Branch of the							
T20NR7WS26	Mason	8 Jan.	1992	Sighting	A. Larson	3	Aubry & Houston
Tornow Branch of the Satsop River, T20NR7WS25	Grays Harbor	10 Jan.	1992	Sighting	A. Larson	-	WDFW-NHDB
Colville N.F., T37NR44ES11	Pend Oreille	10 Jan.	1992	Tracks	T. Holden	-	WDFW-NHDB
Colville N.F., T38NR45ES12	Pend Oreille	1 June	1992	Sighting	Unknown	-	WDFW-NHDB
Colville N.F., T37NR44ES33	Pend Oreille	12 July	1994	Sighting	T. Livle	-	WDFW-NHDB
Gifford Pinchot N.F., T14NR8ES6	Lewis	1 July	1994	Sighting	L. Fitzer	-	WDFW-NHDB
Collville N.F., T39NR45ES10	Pend Oreille	20 Sept.	1995	Sighting	G. Williams & K. Dean	-	WDFW-NHDB
Canyon Lake, T38NR6ES27	Whatcom	31 May	1995	Sighting	D. Weber	-	WDFW-NHDB
Canyon Lake, T38NR6ES26	Whatcom	31 May	1995	Sighting	D. Weber	-	WDFW-NHDB
On N. Fork of Snoqualmie Co. Rd. #57,	Vinc	12 1	1005	Cichtin	MAmerica		WDEW NUDD
124INKOES13	лшg	15 June	1993	Signing	wi. Annijo	-	

Location	County	Date	Year	Type ^a	Reported by	Rel. ^b	Reference ^c
Main fork of Nooksack River, T38NR6ES26	Whatcom	31 May	1995	Sighting	D. Weber	-	WDFW-NHDB
Colville N.F., T39NR43ES36	Pend Oreille	e 30 Jan.	1996	Tracks	J. Goldsmith	-	WDFW-NHDB
Olympic N.F., Quinault Ridge, T22NR10WS36	Grays Harbor	1 July	1996	Sighting	J. Anthony	_	WDFW-NHDB
betw.canyon rim and Narada Falls, MtRNP T15NR8ES24	Pierce	29 Aug	1996	Sighting	S. Mettler	-	R. Lechleitner
1 mi W of Longmire, Mt.RNP T15NR8ES32	Pierce	3 Dec	1996	Sighting	D. Adams	-	R. Lechleitner
Louie Way Gap T13N R14E S23	Yakima	3 June	1997	Sighting	R. Estes	-	WDFW-NHDB
3 mi NW Newman Lake T27NR45ES19	Spokane	21 Jan	1998	Sighting	J. O'Donnell	-	WDFW

^a Type: Trapping indicates a report of a trapped animal with no accompanying specimen or photo; Sighting indicates a visual observation by observer listed; Tracks indicates the observation of tracks that the observer believed to be made by a fisher.

b Reliability of observations in Aubry and Houston's (1992) is based on a scale from 1(highest reliability) to 6 (lowest), where:

1= museum specimens and photographs

2= observations are first person trapping accounts

3= observations are detailed visual sightings by an observer of known qualifications

4= observations are sightings by a person with undetermined or limited qualifications

5= observations are tracks

6= observations are those with insufficient or questionable description or locality data (Aubry and Houston 1992).

^c References include: published literature; Aubry and Houston = Aubry and Houston (1992 and database provided to WDWF);; Washington Department of Fish and Wildlife- Natural Heritage Database (WDFW-NHDB) records; personal communications with individuals (e.g., B. Adamire); and museum specimens (acronym for the museum and a specimen number. Museum acronyms include: USNM = U.S. National Museum of Natural History (Smithsonian Inst.); FMNH = Field Museum of Natural History; UPSMNH = University of Puget Sound Museum of Natural History; UWBM = University of Washington Burke Museum).

Appendix C. Washington Administrative Codes.

WAC 232-12-011 Wildlife classified as protected shall not be hunted or fished.

Protected wildlife are designated into three subcategories: Threatened, sensitive, and other. (1) Threatened species are any wildlife species native to the state of Washington that are likely to become endangered within the foreseeable future throughout a significant portion of their range within the state without cooperative management or removal of threats. Protected wildlife designated as threatened include:

Common Name	Scientific Name
Western gray squirrel	Sciurus griseus
Steller (northern) sea lion	Eumetopias jubatus
North American lynx	Lynx canadensis
Aleutian Canada goose	Branta canadensis leucopareia
Bald eagle	Haliaeetus leucocephalus
Ferruginous hawk	Buteo regalis
Marbled murrelet	Brachyramphus marmoratus
Green sea turtle	Chelonia mydas
Loggerhead sea turtle	Caretta caretta

(2) Sensitive species are any wildlife species native to the state of Washington that are vulnerable or declining and are likely to become endangered or threatened in a significant portion of their range within the state without cooperative management or removal of threats. Protected wildlife designated as sensitive include:

Common Name	Scientific Name		
Gray whale	Eschrichtius gibbosus		
Larch Mountain salamander	Plethodon larselli		
(3) Other protected wildlife include:			
Common Name	Scientific Name		
Cony or pika	Ochotona princeps		
Least chipmunk	Tamius minimus		
Yellow-pine chipmunk	Tamius amoenus		
Townsend's chipmunk	Tamius townsendii		
Red-tailed chipmunk	Tamius ruficaudus		
Hoary marmot	Marmota caligata		
Olympic marmot	Marmota olympus		
Cascade golden-mantled			
ground squirrel	Spermophilus saturatus		
Golden-mantled ground squirrel	Spermophilus lateralis		
Washington ground squirrel	Spermophilus washingtoni		
Red squirrel	Tamiasciurus hudsonicus		
Douglas squirrel	Tamiasciurus douglasii		
Northern flying squirrel	Glaucomys sabrinus		
Fisher	Martes pennanti		
Wolverine	Gulo gulo		
Painted turtle	Chrysemys picta		
California mountain kingsnake	Lampropeltis zonata;		

All birds not classified as game birds, predatory birds or endangered species, or designated as threatened species or sensitive species; all bats, except when found in or immediately adjacent to a dwelling or other occupied building; mammals of the order *Cetacea*, including whales, porpoises, and mammals of the order *Pinnipedia* not otherwise classified as endangered species, or designated as threatened species or sensitive species. This section shall not apply to hair seals and sea lions which are threatening to damage or are damaging commercial fishing gear being utilized in a lawful manner or when said mammals are damaging or threatening to damage commercial fish being lawfully taken with commercial gear.

[Statutory Authority: RCW 77.12.020. 97-18-019 (Order 97-167), § 232-12-011, filed 8/25/97, effective 9/25/97. Statutory Authority: RCW 77.12.040, 77.12.020, 77.12.030 and 77.32.220. 97-12-048, § 232-12-011, filed 6/2/97, effective 7/3/97. Statutory Authority: RCW 77.12.020. 93-21-027 (Order 615), § 232-12-011, filed 10/14/93, effective 11/14/93; 90-11-065 (Order 441), § 232-12-011, filed 5/15/90, effective 6/15/90. Statutory Authority: RCW 77.12.040. 89-11-061 (Order 392), § 232-12-011, filed 5/18/89; 82-19-026 (Order 192), § 232-12-011, filed 9/9/82; 81-22-002 (Order 174), § 232-12-011, filed 10/22/81; 81-12-029 (Order 165), § 232-12-011, filed 6/1/81.]

232-12-014 Wildlife classified as endangered species.

Endangered species include:

Common Name	Scientific Name
Pygmy rabbit	Brachylagus idahoensis
Gray wolf	Canis lupus
Grizzly bear	Ursus arctos
Sea otter	Enhydra lutris
Sei whale	Balaenoptera borealis
Fin whale	Balaenoptera physalus
Blue whale	Balaenoptera musculus
Humpback whale	Megaptera novaeangliae
Black right whale	Balaena glacialis
Sperm whale	Physeter macrocephalus
Columbian white-tailed deer	Odocoileus virginianus leucurus
Woodland caribou	Rangifer tarandus caribou
American white pelican	Pelecanus erythrorhynchos
Brown pelican	Pelecanus occidentalis
Peregrine falcon	Falco peregrinus
Sandhill crane	Grus canadensis
Snowy plover	Charadrius alexandrinus
Upland sandpiper	Bartramia longicauda
Spotted owl	Strix occidentalis
Western pond turtle	Clemmys marmorata
Leatherback sea turtle	Dermochelys coriacea
Oregon silverspot butterfly	Speyeria zerene hippolyta
Oregon spotted frog	Rana pretiosa

[Statutory Authority: RCW 77.12.020. 97-18-019 (Order 97-167), § 232-12-014, filed 8/25/97, effective 9/25/97; 93-21-026 (Order 616), § 232-12-014, filed 10/14/93, effective 11/14/93. Statutory Authority: RCW 77.12.020(6). 88-05-032 (Order 305), § 232-12-014, filed 2/12/88. Statutory Authority: RCW 77.12.040. 82-19-026 (Order 192), § 232-12-014, filed 9/9/82; 81-22-002 (Order 174), § 232-12-014, filed 10/22/81; 81-12-029 (Order 165), § 232-12-014, filed 6/1/81.]

WAC 232-12-297

Endangered, threatened, and sensitive wildlife species classification.

PURPOSE

1.1 The purpose of this rule is to identify and classify native wildlife species that have need of protection and/or management to ensure their survival as free-ranging populations in Washington and to define the process by which listing, management, recovery, and delisting of a species can be achieved. These rules are established to ensure that consistent procedures and criteria are followed when classifying wildlife as endangered, or the protected wildlife subcategories threatened or sensitive.

DEFINITIONS

For purposes of this rule, the following definitions apply:

- 2.1 "Classify" and all derivatives means to list or delist wildlife species to or from endangered, or to or from the protected wildlife subcategories threatened or sensitive.
- 2.2 "List" and all derivatives means to change the classification status of a wildlife species to endangered, threatened, or sensitive.
- 2.3 "Delist" and its derivatives means to change the classification of endangered, threatened, or sensitive species to a classification other than endangered, threatened, or sensitive.
- 2.4 "Endangered" means any wildlife species native to the state of Washington that is seriously threatened with

extinction throughout all or a significant portion of its range within the state.

- 2.5 "Threatened" means any wildlife species native to the state of Washington that is likely to become an endangered species within the forseeable future throughout a significant portion of its range within the state without cooperative management or removal of threats.
- 2.6 "Sensitive" means any wildlife species native to the state of Washington that is vulnerable or declining and is likely to become endangered or threatened in a significant portion of its range within the state without cooperative management or removal of threats.
- 2.7 "Species" means any group of animals classified as a species or subspecies as commonly accepted by the scientific community.
- 2.8 "Native" means any wildlife species naturally occurring in Washington for purposes of breeding, resting, or foraging, excluding introduced species not found historically in this state.
- 2.9 "Significant portion of its range" means that portion of a species' range likely to be essential to the long term survival of the population in Washington.

LISTING CRITERIA

- 3.1 The commission shall list a wildlife species as endangered, threatened, or sensitive solely on the basis of the biological status of the species being considered, based on the preponderance of scientific data available, except as noted in section 3.4.
- 3.2 If a species is listed as endangered or threatened under the federal Endangered Species Act, the agency will recommend to the commission that it be listed as endangered or threatened as specified in section 9.1. If listed, the agency will proceed with development of a recovery plan pursuant to section 11.1.
- 3.3 Species may be listed as endangered, threatened, or sensitive only when populations are in danger of failing, declining, or are vulnerable, due to factors including but not restricted to limited numbers, disease, predation, exploitation, or habitat loss or change, pursuant to section 7.1.
- 3.4 Where a species of the class Insecta, based on substantial evidence, is determined to present an unreasonable risk to public health, the commission may make the determination that the species need not be listed as endangered, threatened, or sensitive.

DELISTING CRITERIA

4.1 The commission shall delist a wildlife species from endangered, threatened, or sensitive solely on the basis of the biological status of the species being considered, based on the preponderance of scientific data available. 4.2 A species may be delisted from endangered, threatened, or sensitive only when populations are no longer in danger of failing, declining, are no longer vulnerable, pursuant to section 3.3, or meet recovery plan goals, and when it no longer meets the definitions in sections 2.4, 2.5, or 2.6.

INITIATION OF LISTING PROCESS

- 5.1 Any one of the following events may initiate the listing process.
 - 5.1.1 The agency determines that a species population may be in danger of failing, declining, or vulnerable, pursuant to section 3.3.
 - 5.1.2 A petition is received at the agency from an interested person. The petition should be addressed to the director. It should set forth specific evidence and scientific data which shows that the species may be failing, declining, or vulnerable, pursuant to section 3.3. Within 60 days, the agency shall either deny the petition, stating the reasons, or initiate the classification process.
 - 5.1.3 An emergency, as defined by the Administrative Procedure Act, chapter 34.05 RCW. The listing of any species previously classified under emergency rule shall be governed by the provisions of this section.
 - 5.1.4 The commission requests the agency review a species of concern.
- 5.2 Upon initiation of the listing process the agency shall publish a public notice in the Washington Register, and notify those parties who have expressed their interest to the department, announcing the initiation of the classification process and calling for scientific information relevant to the species status report under consideration pursuant to section 7.1.

INITIATION OF DELISTING PROCESS

- 6.1 Any one of the following events may initiate the delisting process:
 - 6.1.1 The agency determines that a species population may no longer be in danger of failing, declining, or vulnerable, pursuant to section 3.3.
 - 6.1.2 The agency receives a petition from an interested person. The petition should be addressed to the director. It should set forth specific evidence and scientific data which shows that the species may no longer be failing, declining, or vulnerable, pursuant to section 3.3. Within 60 days, the agency shall

either deny the petition, stating the reasons, or initiate the delisting process.

- 6.1.3 The commission requests the agency review a species of concern.
- 6.2 Upon initiation of the delisting process the agency shall publish a public notice in the Washington Register, and notify those parties who have expressed their interest to the department, announcing the initiation of the delisting process and calling for scientific information relevant to the species status report under consideration pursuant to section 7.1.

SPECIES STATUS REVIEW AND AGENCY RECOMMENDATIONS

- 7.1 Except in an emergency under 5.1.3 above, prior to making a classification recommendation to the commission, the agency shall prepare a preliminary species status report. The report will include a review of information relevant to the species' status in Washington and address factors affecting its status, including those given under section 3.3. The status report shall be reviewed by the public and scientific community. The status report will include, but not be limited to an analysis of:
 - 7.1.1 Historic, current, and future species population trends.
 - 7.1.2 Natural history, including ecological relationships (e.g., food habits, home range, habitat selection patterns).
 - 7.1.3 Historic and current habitat trends.
 - 7.1.4 Population demographics (e.g., survival and mortality rates, reproductive success) and their relationship to long term sustainability.
 - 7.1.5 Historic and current species management activities.
- 7.2 Except in an emergency under 5.1.3 above, the agency shall prepare recommendations for species classification, based upon scientific data contained in the status report. Documents shall be prepared to determine the environmental consequences of adopting the recommendations pursuant to requirements of the State Environmental Policy Act (SEPA).
- 7.3 For the purpose of delisting, the status report will include a review of recovery plan goals.

PUBLIC REVIEW

8.1 Except in an emergency under 5.1.3 above, prior to making a recommendation to the commission, the agency shall provide an opportunity for interested parties to submit new scientific data relevant to the status report, classification recommendation, and any SEPA findings.

- 8.1.1 The agency shall allow at least 90 days for public comment.
- 8.1.2 The agency will hold at least one Eastern Washington and one Western Washington public meeting during the public review period.

FINAL RECOMMENDATIONS AND COMMISSION ACTION

- 9.1 After the close of the public comment period, the agency shall complete a final status report and classification recommendation. SEPA documents will be prepared, as necessary, for the final agency recommendation for classification. The classification recommendation will be presented to the commission for action. The final species status report, agency classification recommendation, and SEPA documents will be made available to the public at least 30 days prior to the commission meeting.
- 9.2 Notice of the proposed commission action will be published at least 30 days prior to the commission meeting.

PERIODIC SPECIES STATUS REVIEW

- 10.1 The agency shall conduct a review of each endangered, threatened, or sensitive wildlife species at least every five years after the date of its listing. This review shall include an update of the species status report to determine whether the status of the species warrants its current listing status or deserves reclassification.
 - 10.1.1 The agency shall notify any parties who have expressed their interest to the department of the periodic status review. This notice shall occur at least one year prior to end of the five year period required by section 10.1.
- 10.2 The status of all delisted species shall be reviewed at least once, five years following the date of delisting.
- 10.3 The department shall evaluate the necessity of changing the classification of the species being reviewed. The agency shall report its findings to the commission at a commission meeting. The agency shall notify the public of its findings at least 30 days prior to presenting the findings to the commission.
 - 10.3.1 If the agency determines that new information suggests that classification of a species should be changed from its present state, the agency shall initiate classification procedures provided for in these rules starting with section 5.1.

- 10.3.2 If the agency determines that conditions have not changed significantly and that the classification of the species should remain unchanged, the agency shall recommend to the commission that the species being reviewed shall retain its present classification status.
- 10.4 Nothing in these rules shall be construed to automatically delist a species without formal commission action.

RECOVERY AND MANAGEMENT OF LISTED SPECIES

- 11.1 The agency shall write a recovery plan for species listed as endangered or threatened. The agency will write a management plan for species listed as sensitive. Recovery and management plans shall address the listing criteria described in sections 3.1 and 3.3, and shall include, but are not limited to:
 - 11.1.1 Target population objectives.
 - 11.1.2 Criteria for reclassification.
 - 11.1.3 An implementation plan for reaching population objectives which will promote cooperative management and be sensitive to landowner needs and property rights. The plan will specify resources needed from and impacts to the department, other agencies (including federal, state, and local), tribes, landowners, and other interest groups. The plan shall consider various approaches to meeting recovery objectives including, but not limited to regulation, mitigation, acquisition, incentive, and compensation mechanisms.
 - 11.1.4 Public education needs.
 - 11.1.5 A species monitoring plan, which requires periodic review to allow the incorporation of new information into the status report.
- 11.2 Preparation of recovery and management plans will be initiated by the agency within one year after the date of listing.
 - 11.2.1 Recovery and management plans for species listed prior to 1990 or during the five years following the adoption of these rules shall be completed within five years after the date of listing or adoption of these rules, whichever comes later. Development of recovery plans for endangered species will receive higher priority than threatened or sensitive species.
 - 11.2.2 Recovery and management plans for species listed after five years following the adoption of these rules shall be completed within three years after the date of listing.
 - 11.2.3 The agency will publish a notice in the Washington Register and notify any parties who have expressed

interest to the department interested parties of the initiation of recovery plan development.

- 11.2.4 If the deadlines defined in sections 11.2.1 and 11.2.2 are not met the department shall notify the public and report the reasons for missing the deadline and the strategy for completing the plan at a commission meeting. The intent of this section is to recognize current department personnel resources are limiting and that development of recovery plans for some of the species may require significant involvement by interests outside of the department, and therefore take longer to complete.
- 11.3 The agency shall provide an opportunity for interested public to comment on the recovery plan and any SEPA documents.

CLASSIFICATION PROCEDURES REVIEW

- 12.1 The agency and an ad hoc public group with members representing a broad spectrum of interests, shall meet as needed to accomplish the following:
 - 12.1.1 Monitor the progress of the development of recovery and management plans and status reviews, highlight problems, and make recommendations to the department and other interested parties to improve the effectiveness of these processes.
 - 12.1.2 Review these classification procedures six years after the adoption of these rules and report its findings to the commission.

AUTHORITY

- 13.1 The commission has the authority to classify wildlife as endangered under RCW 77.12.020. Species classified as endangered are listed under WAC 232-12-014, as amended.
- 13.2 Threatened and sensitive species shall be classified as subcategories of protected wildlife. The commission has the authority to classify wildlife as protected under RCW 77.12.020. Species classified as protected are listed under WAC 232-12-011, as amended. [Statutory Authority: RCW 77.12.020. 90-11-066 (Order 442), § 232-12-297, filed 5/15/90, effective 6/15/90.]