Tucannon River Spring Chinook Salmon Hatchery Evaluation Program 2015 Annual Report

by Michael P. Gallinat and Lance A. Ross

Washington Department of
Fish and Wildlife
Fish Program

Tucannon River Spring Chinook Salmon Hatchery Evaluation Program

2015 Annual Report

by

Michael P. Gallinat
Lance A. Ross

Washington Department of Fish and Wildlife Fish Program/Science Division

600 Capitol Way North
Olympia, Washington 98501-1091

Prepared for:
U.S. Fish and Wildlife Service

Lower Snake River Compensation Plan Office
1387 S. Vinnell Way, Suite 343
Boise, Idaho 83709
Cooperative Agreement: F16AC00033

August 2016

Acknowledgments

The Tucannon River Spring Chinook Salmon Hatchery Evaluation Program is the result of efforts by many individuals within the Washington Department of Fish and Wildlife (WDFW) and from other agencies.

We would like to express our sincere gratitude to Ace Trump, Lyons Ferry Hatchery Complex Manager and Hatchery Specialists Derek Gloyn, Doug Maxey, Larabee Miller, and Dick Rogers for their cooperation with hatchery sampling, providing information regarding hatchery operations and hatchery records, and their input on evaluation and research activities. We also thank all additional hatchery personnel who provide the day-to-day care of the spring Chinook and for their assistance with hatchery spawning, sampling, and record keeping.

We thank Lynn Anderson and the Coded-Wire Tag Lab staff for their assistance in coded-wire tag verification. We also thank Lance Campbell and Andrew Claiborne for providing scale ages, and Steve Roberts for information on fish health during the year. Special thanks go to David Bramwell for help formatting this report.

We thank the staff of the Snake River Lab; in particular Joe Bumgarner, Jerry Dedloff, Debbie Milks, Todd Miller, Afton Oakerman, and seasonal workers Ashly Beebe, Debbie Conwell, Brigido Garcia, Josh Oakerman, Sarah Schooler, and Joshua Stedman who helped collect the information presented in this report. We also thank Ethan Crawford and the staff of the Asotin Creek Field Office for assisting us with spawning ground surveys on Asotin Creek.

We thank Joe Bumgarner, Jeremy Trump, Andrew Murdoch, Rod Engle, and Erik Neatherlin for reviewing the draft report.

The United States Fish and Wildlife Service through the Lower Snake River Compensation Plan Office funded the supplementation program.

Lyons Ferry Hatchery (LFH) and Tucannon Fish Hatchery (TFH) were built/modified under the Lower Snake River Fish and Wildlife Compensation Plan. One objective of the Plan is to compensate for the estimated annual loss of 5,760 (1,152 above the project area and 4,608 below the project area for harvest) Tucannon River spring Chinook caused by hydroelectric projects on the Snake River. With co-manager agreement, the conventional supplementation production goal was increased in 2006 from 132,000 to 225,000 fish for release as yearlings. This report summarizes activities of the Washington Department of Fish and Wildlife Lower Snake River Hatchery Evaluation Program for Tucannon River spring Chinook for the period May 2015 to April 2016.

A total of 879 salmon were captured in the TFH trap in 2015 (271 natural adults, 14 natural jacks, 377 hatchery adults, and 217 hatchery jacks). Of these, 131 (101 natural, 30 hatchery) were collected and hauled to LFH for broodstock, 242 were held at LFH for adult outplanting, and the remaining fish were passed upstream. During 2015, two (1.5\%) salmon collected for broodstock died prior to spawning.

Spawning of supplementation fish occurred once a week between 25 August and 22 September, with peak eggtake occurring on 15 September. A total of 280,519 eggs were collected from 55 natural and 20 hatchery-origin female Chinook. Egg mortality to eye-up was 2.7\% (7,630 eggs) which left 272,889 live eggs. An additional 2.5\% (6,755) loss of sac-fry left 266,134 BY 2015 fish for production.

Due to the drought conditions in 2015 and the recent high pre-spawn mortality rates for Tucannon River spring Chinook, fish managers decided to hold a portion of the returning adults at LFH and then returning those fish to the upper stream reaches near the beginning of spawning. A total of 232 fish were returned to the river in small groups (~ 15 pairs/group) and released at or above Cow Camp Bridge (rkm 72.9) at five different locations on 17 August and 24 August. No pre-spawn mortalities of outplanted fish were documented.

Evaluations personnel conducted pre-spawn mortality surveys in the Tucannon River between 15 May and 20 August during 2015. These surveys covered from Sheep Creek (rkm 84) to Bridge 10 (rkm 43). A cumulative total of 218 river kilometers were walked and 32 pre-spawn mortalities (15 hatchery, 13 natural, and 4 unknown origin) from fish passed upstream were recovered. Weekly spawning ground surveys were conducted from 26 August and were completed by 8 October 2015. A total of 191 redds and 188 carcasses (62 natural, 126 hatchery) were found. Carcass recovery rates were 10% for fish passed upstream and 31% for the adult outplant group. Survival of fish passed upstream was estimated to be only 32% during the time
period fish were held at the hatchery. Based on redd counts, carcasses recovered, and broodstock collection, the estimated return to the river for 2015 was 1,777 spring Chinook (667 natural adults, 65 natural jacks and 855 hatchery-origin adults, 190 hatchery jacks).

Volitional release of the 2014 BY smolts began on 1 April and continued until 15 April, 2016 when the remaining fish were forced out. An estimated 221,099 BY14 smolts were released.

Evaluation staff operated a downstream migrant trap to provide juvenile outmigration estimates. During the 2014/2015 emigration, we estimated that 3,831 (2,722-5,667 95\% C.I.) natural spring Chinook (BY 2013) smolts emigrated from the Tucannon River.

Smolt-to-adult return rates (SAR) for natural origin salmon were seven times higher on average (based on geometric means) than hatchery origin salmon. However, hatchery salmon survive almost three times greater than natural salmon from parent to adult progeny.

Table of Contents

List of Tables ii
List of Figures iv
List of Appendices v
Introduction 1
Program Objectives. 1
ESA Permits 1
Facility Descriptions 2
Tucannon River Watershed Characteristics 2
Adult Salmon Evaluation 4
Broodstock Trapping 4
Broodstock Mortality 6
Broodstock Spawning 7
Adult Outplanting 8
Natural Spawning. 9
Historical Trends in Natural Spawning. 10
Histology Sampling 13
Genetic Sampling. 14
Age Composition, Length Comparisons, and Fecundity 14
Arrival and Spawn Timing Trends 18
Total Run-Size 21
Spawning Escapement 23
Coded-Wire Tag Sampling 25
Stray Salmon into the Tucannon River 26
Tucannon River Spring Chinook in Asotin Creek 28
Adult PIT Tag Returns 30
Juvenile Salmon Evaluation 32
Hatchery Rearing, Marking, and Release 32
Smolt Trapping 33
Juvenile Migration Studies 36
Survival Rates 37
Fishery Contribution and Out-of-Basin Straying. 46
Adjusted Hatchery SAS 48
Conclusions and Recommendations 49
Literature Cited 51

List of Tables

Table 1. Description of five strata within the Tucannon River 3
Table 2. Numbers of spring Chinook salmon captured, trap mortalities, strays killed outright, fish collected for broodstock, or passed upstream to spawn naturally at the TFH trap from 1986-2015 5
Table 3. Numbers of pre-spawning mortalities and percent of fish collected for broodstock at TFH and held at TFH (1985-1991) or LFH (1992-2015) 6
Table 4. Number of fish spawned or killed outright (K.O.), estimated egg collection, and egg mortality of natural and hatchery origin Tucannon River spring Chinook salmon at LFH in 2015 7
Table 5. Date, release location, and water temperatures during release for the groups of spring Chinook salmon returned to the Tucannon River after being held at Lyons Ferry Hatchery during 2015 8
Table 6. Numbers and general locations of salmon redds and carcasses (includes pre-spawn mortalities) recovered on the Tucannon River spawning grounds, 2015 (the Tucannon Hatchery adult trap is located at rkm 59) 10
Table 7. Number of spring Chinook salmon redds and redds/km (in parenthesis) by stratum and year, and the number and percent of redds above and below the TFH adult trap in the Tucannon River, 1985-2015 12
Table 8. Pre-spawn mortalities from both the Tucannon River and from adults held for outplanting at LFH that were used for histology sampling during 2015 14
Table 9. Average number of eggs/female (n, SD) by age group of Tucannon River natural and hatchery origin broodstock, 1990-2015 (partial spawned females are excluded) 17
Table 10. Peak dates of arrival of natural and hatchery salmon to the TFH adult trap and peak (date) and duration (number of days) for spawning in the hatchery and river, 1986- 2015 19
Table 11. Estimated spring Chinook salmon run to the Tucannon River and recovered pre- spawn mortalities (PSM), 1985-2015 22
Table 12. Estimated spawning escapement and the calculation methodology used for the 1985 to 2015 run years 24
Table 13. Coded-wire tag codes of hatchery salmon sampled at LFH and the Tucannon River, 2015 25
Table 14. Spring Chinook salmon (natural and hatchery) sampled from the Tucannon River, 2015 25
Table 15. Final Tucannon River PIT tag array detections of spring Chinook originally tagged at locations other than the Tucannon River (strays) during 2015 27
Table 16. Numbers and general locations of spring Chinook salmon redds, live fish observed, and carcasses recovered from Asotin Creek, 2015 28
Table 17. Historical redd counts in Asotin Creek from 1972-73 and 1984-2015 (WDFW 2016) 29
Table 18. Number of Tucannon River spring Chinook juvenile fish PIT tagged by origin and calendar year and adult returns detected (\%) in the Columbia River System by origin. 30
Table 19. Number and origin of PIT tagged Tucannon River spring Chinook adult returns that overshoot the Tucannon River (includes fish that were last detected returning back downstream towards the Tucannon River) and also adults detected at Lower Granite Dam (LGR) that stayed above LGR Dam 31
Table 20. Sample size (N), mean length (mm), coefficient of variation (CV), condition factor (K), mean weight (g), and precocity of 2014 BY juveniles sampled at TFH, and Curl Lake AP 32
Table 21. Preliminary spring Chinook salmon releases into the Tucannon River, 2016 release year 33
Table 22. Cumulative detection (one unique detection per tag code) and mean travel time in days (TD) of PIT tagged conventional hatchery supplementation (TFH and LFH reared) smolts released ${ }^{\text {a }}$ from Curl Lake AP (rkm 65.6) on the Tucannon River at downstream Snake and Columbia River dams and natural origin smolts tagged and released (January through June) at the Tucannon River smolt trap (rkm 3) during 2015 36
Table 23. Estimates of natural in-river produced Tucannon spring Chinook salmon (both hatchery and natural origin parents) abundance by life stage for 1985-2015 broods 38
Table 24. Estimates of Tucannon spring Chinook salmon abundance (spawned and reared in the hatchery) by life stage for 1985-2015 broods 39
Table 25. Percent survival by brood year for juvenile salmon and the multiplicative advantage of hatchery-reared salmon over naturally-reared salmon in the Tucannon River 40
Table 26. Adult returns and SARs of natural salmon to the Tucannon River for brood years 1985-2012 41
Table 27. Adult returns and SARs of hatchery salmon to the Tucannon River for brood years 1985-2012 42
Table 28. Progeny-to-parent survival estimates of Tucannon River spring Chinook salmon from 1985 through 2011 brood years (2011 brood year incomplete) 44
Table 29. Hatchery SAS adjusted for recoveries from outside the Tucannon River subbasin as reported in the RMIS database, 1985-2010 brood years 48

List of Figures

Figure 1. Location of the Tucannon River, and Lyons Ferry and Tucannon Hatcheries within the Snake River basin 3
Figure 2. Number of redds/km and percentage of redds above the adult trap on the Tucannon River, 1986-2015 11
Figure 3. Historical (1985-2014), and 2015 age composition (run year) for spring Chinook in the Tucannon River 15
Figure 4. Mean post-orbital to hypural-plate (POH) length comparisons between age-4 naturaland hatchery-origin males (NM and HM) and natural and hatchery-origin females(NF and HF) with 95\% confidence intervals for the years 1985-2015.16
Figure 5. Cumulative run timing by date at the Tucannon Fish Hatchery adult trap on the Tucannon River for both natural and hatchery origin Tucannon River spring Chinook salmon, 1994-2015 20
Figure 6. Emigration timing of natural spring Chinook salmon captured during smolt trap operations (rkm 3) on the Tucannon River for the 2014-15 migration year 33
Figure 7. Length frequency distribution of sampled natural spring Chinook salmon captured in the Tucannon River smolt trap, 2014/2015 season 34
Figure 8. Return per spawner (with replacement line) for the 1985-2011 brood years (2011 incomplete brood year) 43
Figure 9. Tucannon River spring Chinook natural origin returns with the moving ten year geometric mean (black line) for the 1985-2015 run years 45
Figure 10. Total escapement for Tucannon River spring Chinook salmon for the 1985-2015 run years 47

List of Appendices

Appendix A: Annual Takes for 2015 54
Appendix B: Spring Chinook Captured, Transported to Lyons Ferry Hatchery, or Passed Upstream at the Tucannon Hatchery Trap in 2015 56
Appendix C: Age Composition by Brood Year for Tucannon River Spring Chinook Salmon 59
Appendix D: Total Estimated Run-Size of Tucannon River Spring Chinook Salmon (1985- 2015) 61
Appendix E: Stray Hatchery-Origin Spring Chinook Salmon in the Tucannon River (1990- 2015) 63
Appendix F: Final PIT Tag Detections of Returning Tucannon River Spring Chinook 67
Appendix G: Historical Hatchery Releases (1987-2016 Release Years) 82
Appendix H: Numbers of Fish Species Captured by Month in the Tucannon River Smolt Trap during the 2015 Outmigration 86
Appendix I: Proportionate Natural Influence (PNI) for the Tucannon Spring Chinook Population (1985-2015) 88
Appendix J: Recoveries of Coded-Wire Tagged Salmon Released Into the Tucannon River for the 1985-2011 Brood Years 90

Introduction

Program Objectives

Legislation under the Water Resources Act of 1976 authorized the establishment of the Lower Snake River Compensation Plan (LSRCP) to help mitigate for the losses of salmon and steelhead runs due to construction and operation of the Snake River dams and authorized hatchery construction and production in Washington, Idaho, and Oregon as a mitigation tool (USACE 1975). In Washington, Lyons Ferry Hatchery (LFH) was constructed and Tucannon Fish Hatchery (TFH) was modified. Under the mitigation negotiations, local fish and wildlife agencies determined through a series of conversion rates of McNary Dam counts that 2,400 spring Chinook (2% of passage at McNary Dam) annually escaped into the Tucannon River. The agencies also estimated a 48% cumulative loss rate to juvenile downstream migrants passing through the four lower Snake River dams. As such, $1,152^{1}$ lost adult Tucannon River origin spring Chinook needed to be compensated for above the project area, with the expectation that the other 1,248 (52\%) would continue to come from natural production. An additional 4,608 needed to be compensated for to provide harvest below the project area for a total mitigation goal of 5,760 Tucannon River spring Chinook. The agencies also determined through other survival studies at the time that a smolt-to-adult survival rate (SAR) to the project area of 0.87% was a reasonable expectation for spring and summer Chinook salmon. Based on an assumed 0.87% above project area SAR and the 1,152 above project area mitigation goal it was determined that 132,000 smolts (30 g fish) needed to be released annually. In 1984, Washington Department of Fish and Wildlife ${ }^{2}$ (WDFW) began to evaluate the success of these two hatcheries in meeting the mitigation goal, and identifying factors that would improve performance of the hatchery fish.

In an attempt to increase adult returns and come closer to achieving the LSRCP mitigation goal, the co-managers agreed to increase the conventional supplementation program goal to 225,000 yearling smolts annually beginning with the 2006 brood year. In addition, size at release was also increased to 38 g fish (12 fpp) beginning with the 2011 brood year. This report summarizes work performed by the WDFW Tucannon Spring Chinook Evaluation Program from May 2015 through April 2016.

ESA Permits

[^0]The Tucannon River spring Chinook population was originally listed as "endangered" under the Endangered Species Act (ESA) on April 22, 1992 (FR 57 No. 78: 14653). The listing status was changed to "threatened" in 1995 (April 17, 1995; FR 60 No. 73: 19342). The listing was reviewed again in 1999 (FR 64 (57): 14517-14528) with the population remaining listed as "threatened" as part of the Snake River Spring/Summer Chinook Salmon evolutionary significant unit (ESU). The WDFW was originally issued a Section 10 Permit (\#848 broodstock collection and monitoring) which expired in March 1998. Permits \#1126 and \#1129 were issued in 1998 to allow continued take for this program, but those permits have since expired. A Hatchery and Genetic Management Plan (HGMP) was originally submitted as the application for a new Section 4 (d) Permit for this program in 2005. An updated HGMP requesting ESA Section 10 permit coverage was submitted in 2011, and is currently under consultation with NOAA Fisheries. This annual report summarizes all work performed by WDFW's LSRCP Tucannon Spring Chinook Salmon Evaluation Program during 2015. Numbers of direct and indirect takes of listed Snake River spring Chinook (Tucannon River stock) for the 2015 calendar year are presented in Appendix A (Tables 1-2).

Facility Descriptions

Lyons Ferry Hatchery is located on the Snake River (rkm 90) at its confluence with the Palouse River and has eight deep wells that produce nearly constant $11^{\circ} \mathrm{C}$ water (Figure 1). It is used for adult broodstock holding and spawning, and early life incubation and rearing. All juvenile fish are marked and returned to TFH in late September/October for final rearing and acclimation.

Tucannon Fish Hatchery, located at rkm 59 on the Tucannon River, has an adult collection trap on site (Figure 1). Adults returning to TFH are transported to LFH and held until spawning. Juveniles are reared at TFH through the winter until release in the spring on a combination of well, spring, and river water. River water is the primary water source, which allows for a more natural winter temperature profile. In February/March, the fish are transported to Curl Lake Acclimation Pond (AP) located at rkm 66, a 0.85 hectare natural bottom lake with a mean depth of 2.7 m , and volitionally released during April.

Tucannon River Watershed Characteristics

The Tucannon River empties into the Snake River between Little Goose and Lower Monumental Dams approximately 622 rkm from the mouth of the Columbia River (Figure 1). Stream elevation rises from 150 m at the mouth to $1,640 \mathrm{~m}$ at the headwaters (Bugert et al. 1990). Total watershed area is approximately $1,295 \mathrm{~km}^{2}$. Local habitat problems related to logging, road building, recreation, and agriculture/livestock grazing have limited the production potential of
spring Chinook in the Tucannon River. Land use in the Tucannon watershed is approximately 36% grazed rangeland, 33% dry cropland, 23% forest, 6% WDFW, and 2% other use (Tucannon Subbasin Summary 2001). Five unique strata have been distinguished by predominant land use, habitat, and landmarks (Figure 1; Table 1) and are referenced throughout this report.

Figure 1. Location of the Tucannon River, and Lyons Ferry and Tucannon Hatcheries within the Snake River basin.

Table 1. Description of five strata within the Tucannon River.

Strata	Land Ownership/Usage	Spring Chinook Habitat	River Kilometer $^{\mathbf{b}}$
Lower	Private/Agriculture \& Ranching	Not-Usable (temperature limited)	$0.0-20.1$
Marengo	Private/Agriculture \& Ranching	Marginal (temperature limited)	$20.1-39.9$
Hartsock	Private/Agriculture \& Ranching	Fair to Good	$39.9-55.5$
HMA	State \& Federal/Recreational	Good to Excellent	$55.5-74.5$
Wilderness	Federal/Recreational	Excellent	$74.5-86.3$

[^1]
Adult Salmon Evaluation

Broodstock Trapping

The allowed collection goal for broodstock is 170 adult salmon, depending upon size and fecundity, collected from throughout the duration of the run to meet the smolt production/release goal of 225,000. The proportion of natural origin fish incorporated into the broodstock is based on the estimated run size and the Tucannon Spring Chinook Salmon Hatchery and Genetic Management Plan sliding scale. Additional jack salmon may be collected up to their proportion of the run with an upper limit of 10% of the broodstock. Returning Tucannon hatchery salmon were identified by coded-wire tag (CWT) in the snout or presence of a visible implant elastomer tag behind the eye. Adipose clipped fish are killed outright as strays.

The TFH adult trap began operation in February (for steelhead) with the first spring Chinook captured on 1 May. Some adjustments were made at the trap in 2015 to increase fish attraction (boards removed at the bottom of the trap entrance). A series of temporary PIT tag arrays were installed below the adult trap, and within the fish ladder in 2015 to monitor fish behavior near the trap entrance, estimate passage delay, and potentially fallback. Of 62 total PIT tag detections, only five (8\%) did not enter the fishway to the trap, and 89\% passed the trap within one day (Todd Miller, WDFW, personal communication). Fallback was not apparent from the limited sample. State and Tribal Fisheries Managers were concerned about potential high pre-spawn mortality due to drought conditions so a portion of the fish trapped were held for adult outplanting closer to the onset of spawning (See Adult Outplanting Section). The trap was operated through September. A total of 879 fish entered the trap (271 natural adults, 14 natural jacks, 377 hatchery adults, and 217 hatchery jacks), and 101 natural (101 adults, 0 jacks) and 30 hatchery (30 adults, 0 jacks) spring Chinook were collected and hauled to LFH for broodstock (Table 2, Appendix B). Fish held for adult outplanting were given a right opercle punch and included 58 natural (57 adults, 1 jack) and 184 hatchery origin fish (165 adults, 19 jacks). Fish not collected for transport to LFH were given a left opercle punch and passed upstream. Adults collected for broodstock were injected with tulathromycin (Draxxin ${ }^{3}$) at $2.5 \mathrm{mg} / \mathrm{kg}$ and oxytetracycline at $22 \mathrm{mg} / \mathrm{kg}$. Broodstock and fish held for adult ouplanting were transported to LFH and received formalin drip treatments during holding at 167 ppm every other day at LFH to control fungus.

[^2]Table 2. Numbers of spring Chinook salmon captured, trap mortalities, strays killed outright, fish collected for broodstock, or passed upstream to spawn naturally at the TFH trap from 1986-2015.

Year	Captured at Trap		Trap Mortalities		KilledOutright ${ }^{\text {a }}$	Broodstock Collected		Passed Upstream	
	Natural	Hatchery	Natural	Hatchery		Natural	Hatchery	Natural	Hatchery
1986	247	0	0	0	0	116	0	131	0
1987	209	0	0	0	0	101	0	108	0
1988	267	9	0	0	0	116	9	151	0
1989	156	102	0	0	0	67	102	89	0
1990	252	216	0	1	0	60	75	192	140
1991	109	202	0	0	0	41	89	68	113
1992	242	305	8	3	0	47	50	187	252
1993	191	257	0	0	0	50	47	141	210
1994	36	34	0	0	0	36	34	0	0
1995	10	33	0	0	0	10	33	0	0
1996	76	59	1	4	0	35	45	40	10
1997	99	160	0	0	0	43	54	56	106
$1998{ }^{\text {b }}$	50	43	0	0	0	48	41	1	1
$1999{ }^{\text {c }}$	4	139	0	1	0	1	135	0	0
2000	25	180	0	0	17	12	69	13	94
2001	405	276	0	0	0	52	54	353	222
2002	168	610	0	0	0	42	65	126	545
2003	84	151	0	0	0	42	35	42	116
2004	311	155	0	0	0	51	41	260	114
2005	131	114	0	0	3	49	51	82	60
2006	61	78	0	1	2	36	53	25	22
2007	112	112	0	0	6	54	34	58	72
2008	114	386	0	0	1	42	92	72	293
2009	390	835	0	0	7	89	88	301	740
2010	774	796	0	0	9	86	87	688	700
2011	400	383	0	0	6	89	77	311	300
2012	240	301	0	0	6	93	77	147	218
2013	271	268	0	0	2	98	60	173	206
$2014{ }^{\text {d }}$	343	215	0	0	0	86	41	257	174
2015	285	594	0	0	32	$159{ }^{\text {e }}$	$214{ }^{\text {e }}$	126	348

${ }^{\text {a }}$ Fish identified as strays at the adult trap are killed outright.
${ }^{\mathrm{b}}$ Two males (one natural, one hatchery) captured were transported back downstream to spawn in the river.
${ }^{\text {c }}$ Three hatchery males that were captured were transported back downstream to spawn in the river.
${ }^{\mathrm{d}}$ Ninety-four natural origin fish were collected for broodstock, however eight natural origin females were returned to the river for natural spawning leaving a total of 86 natural origin fish collected for broodstock.
${ }^{e}$ A total of 159 natural origin fish were transported to LFH (101 broodstock and 58 held for adult outplanting) and 214 hatchery origin fish were transported to LFH (30 broodstock and 184 for adult outplanting).

Broodstock Mortality

Two (1.5\%) of the 131 salmon collected for broodstock died prior to spawning in 2015 (Table 3). One of the pre-spawn mortalities was a stray hatchery female (CWT 090652). Table 3 shows that pre-spawning mortality in 2015 was comparable to the mortality documented since broodstock holding at LFH began in 1992. Higher mortality was experienced when fish were held at TFH (1986-1991), likely due to higher water temperatures.

Table 3. Numbers of pre-spawning mortalities and percent of fish collected for broodstock at TFH and held at TFH (1985-1991) or LFH (1992-2015).

		Natural		Hatchery				
Year	Male	Female	Jack	\% of collected	Male	Female	Jack	\% of collected
1985	3	10	0	59.1	-	-	-	-
1986	15	10	0	21.6	-	-	-	-
1987	10	8	0	17.8	-	-	-	-
1988	7	22	0	25.0	-	-	9	100.0
1989	8	3	1	17.9	5	8	22	34.3
1990	12	6	0	30.0	14	22	3	52.0
1991	0	0	1	2.4	8	17	32	64.0
1992	0	4	0	8.2	2	0	0	4.0
1993	1	2	0	6.0	2	1	0	6.4
1994	1	0	0	2.8	0	0	0	0.0
1995	1	0	0	10.0	0	0	3	9.1
1996	0	2	0	5.7	2	1	0	6.7
1997	0	4	0	9.3	2	2	0	7.4
1998	1	2	0	6.3	0	0	0	0.0
1999	0	0	0	0.0	3	1	1	3.8
2000	0	0	0	0.0	1	2	0	3.7
2001	0	0	0	0.0	0	0	0	0.0
2002	0	0	0	0.0	1	1	0	3.1
2003	0	1	0	2.4	0	0	1	2.9
2004	0	3	0	5.9	0	0	1	2.4
2005	2	0	0	4.1	1	2	0	5.9
2006	0	0	0	0.0	1	0	0	1.9
2007	0	2	1	5.6	0	2	0	5.9
2008	1	1	0	4.8	0	0	1	1.1
2009	0	0	0	0.0	0	2	0	2.3
2010	0	0	0	0.0	0	0	0	0.0
2011	0	0	0	0.0	0	0	0	0.0
2012	0	0	0	0.0	1	2	0	3.9
2013	2	3	0	5.1	0	2	0	3.3
2014	0	1	0	1.2	0	0	0	0.0
2015	0	1	0	1.0	0	1	0	3.3

Broodstock Spawning

Spawning at LFH was conducted once a week from 25 August to 22 September, with peak eggtake occurring on 15 September. During the spawning process, the eggs of two females were split in half and fertilized by two males following a 2×2 factorial spawning matrix approach. Factorial mating can have substantial advantages in increasing the genetically effective number of breeders (Busack and Knudsen 2007). The priority order of crosses are Natural x Hatchery, Natural x Natural, and Hatchery x Hatchery, depending upon availability of fish. Three stray hatchery females were spawned but the eggs were destroyed. Three stray hatchery males were also inadvertently included in the broodstock and spawned, however the eggs from those pairings were not destroyed since the females they were spawned with were also spawned with Tucannon males.

A total of 280,519 eggs were collected (Table 4). Eggs were initially disinfected and water hardened for one hour in an iodophor (buffered iodine) solution (100 ppm). The eggs were incubated in vertical tray incubators. Fungus on the incubating eggs was controlled with formalin applied every-other day at $1,667 \mathrm{ppm}$ for 15 minutes. Mortality to eye-up was 2.7% which left 272,889 live eggs. An additional $2.5 \%(6,755)$ loss of sac-fry left 266,134 fish for production.

Table 4. Number of fish spawned or killed outright (K.O.), estimated egg collection, and egg mortality of natural and hatchery origin Tucannon River spring Chinook salmon at LFH in 2015. (Numbers in parentheses were live spawned).

	Natural Origin						
	Males		Jacks		Females		
Spawn Date	Spawned	K.O.	Spawned	K.O.	Spawned	K.O.	Eggs Taken
$8 / 25$	$0(2)$				1		3,504
$9 / 01$	$0(9)$				8		36,681
$9 / 08$	$0(23)$				17		61,914
$9 / 15$	$7(28)$				22		80,536
$9 / 22$	$38^{\text {a }}$	45	0	0	0	55	0
Totals						28,525	
Egg Mortality							

	Hatchery Origin						
Males	Jacks						Females
Spawn Date	Spawned	K.O.	Spawned	K.O.	Spawned	K.O.	Eggs Taken
$8 / 25$	0				1		2,874
$9 / 01$	$0(3)$				3		9,325
$9 / 08$	3				7		26,820
$9 / 15$	3				8		26,998
$9 / 22$	0				1		3,342
Totals	6	0	0	0	20	0	$\mathbf{6 9 , 3 5 9}$
Egg Mortality							1,301

${ }^{\bar{a}}$ Thirty were previously live spawned and sampled at the completion of spawning.

Adult Outplanting

After discussions with the Tribal co-managers, it was decided to hold a portion of the returning adults at LFH, and then return those fish back to the river after 15 August near the on-set of inriver spawning. This decision was made due to the drought conditions in 2015 and the high prespawn mortality rate of adult spring Chinook salmon that has been documented in the Tucannon River in recent years (Gallinat and Ross 2014; Gallinat and Ross 2015; Snake River Lab 2015). Collected fish would be returned to the river between Camp Wooten Bridge and Sheep Creek (rkms 68-86). The remaining fish that were not collected for broodstock were passed upstream in order to estimate both the number of fish below the trap and estimate survival of nonoutplanted fish in the river.

Fish held for adult outplanting were given a right opercle punch (ROP) and fish passed above the trap were given a left opercle punch (LOP). Fish held for outplanting were treated with formalin to control fungus growth.

A total of 252 fish were collected for adult outplanting. Of those, 10 females were added to the hatchery broodstock in order to ensure eggtake goals and 10 fish were pre-spawn mortalities. The remaining 232 fish were transported back to the river in small groups (~ 15 pairs/group) and released at or above Cow Camp Bridge (rkm 72.9) at five different locations on 17 August (59 females, 61 males, 6 jacks) and 24 August (51 females, 49 males, 6 jacks) during the early morning hours when temperatures were coolest (Table 5). Stream surveys were conducted following release and no pre-spawn mortalities of outplanted fish were documented.

Table 5. Date, release location, and water temperatures during release for the groups of spring Chinook salmon returned to the Tucannon River after being held at Lyons Ferry Hatchery during 2015.

Date	Release Site (rkm)	Transport Water Temp. $\left({ }^{\circ} \mathbf{C}\right)$	River Water Temp. $\left({ }^{\circ} \mathbf{C}\right)$	Females	Males	Jacks	Total
$8 / 17 / 15$	74.5	12.2	9.4	13	17	0	30
$8 / 17 / 15$	77.7	12.2	9.2	15	15	1	31
$8 / 17 / 15$	73.3	12.8	10.8	16	14	4	34
$8 / 17 / 15$	72.9	13.3	13.1	15	15	1	31
$8 / 24 / 15$	74.5	12.2	10.0	15	16	1	32
$8 / 24 / 15$	73.3	12.2	10.0	15	15	1	31
$8 / 24 / 15$	73.1	12.8	11.7	12	12	0	24
$8 / 24 / 15$	72.9	13.3	12.8	9	6	4	19
Totals				$\mathbf{1 1 0}$	$\mathbf{1 1 0}$	$\mathbf{1 2}$	$\mathbf{2 3 2}$

Only one hatchery male from the adult outplanting was recovered below river kilometer 68. This male was recovered just below the hatchery intake (rkm 59) suggesting that movement of outplanted fish from the release sites was negligible. Some redd superimposition was observed in the upper watershed suggesting available suitable spawning areas were saturated. Based on
the observations from 2015, if adult outplanting is used as a management tool in future years, improved distribution will be planned to avoid redd superimposition.

During spawning ground surveys, 47 passed fish (LOP) were recovered for a 10% carcass recovery rate (excludes pre-spawn mortalities). A total of 73 adult outplants (ROP) were recovered during the same surveys for a 31% carcass recovery rate. Therefore, survival of fish passed upstream was only 32% during the time period fish were held at the hatchery. While adult outplanting was successful in increasing the number of redds in the river, this activity should be used with caution as it precludes natural selection that would normally occur for fish that hold in the river.

Natural Spawning

Pre-spawn mortality surveys were conducted from 15 May to 20 August during 2015, after which regular weekly spawning ground surveys commenced. These pre-spawning surveys covered from Sheep Creek (rkm 84) to Bridge 10 (rkm 43). The greatest numbers of surveys were conducted from Camp Wooten Bridge (rkm 68) to Cummings Creek Bridge (rkm 56) where the majority of fish historically hold prior to spawning. A cumulative total of 218 river kilometers were walked and 32 pre-spawn mortalities (15 hatchery, 13 natural, and 4 unknown origin) were recovered. Cause of death was not readily apparent for any of the recovered prespawn mortalities, but many had been partially to mostly consumed by predators or scavengers. Weekly spawning ground surveys were conducted from 26 August and were completed by 8 October 2015. One hundred ninety-one redds were counted and a total of 62 natural and 126 hatchery origin carcasses were recovered (Table 6). One hundred twenty redds (63% of total) and 134 carcasses (71% of total) were found above the adult trap.

Table 6. Numbers and general locations of salmon redds and carcasses (includes pre-spawn mortalities) recovered on the Tucannon River spawning grounds, 2015 (the Tucannon Hatchery adult trap is located at rkm 59).

Stratum	Rkm ${ }^{\text {a }}$	Number of redds	Carcasses Recovered	
			Natural	Hatchery
Wilderness	84-86	1	1	2
	78-84	25	4	29
	75-78	30	8	14
HMA	73-75	26	2	21
	68-73	20	1	13
	66-68	5	3	5
	62-66	9	1	5
	59-62	4	16	9
Hartsock	-----	nnon Fish Hatchery		----
	56-59	27	17	20
	52-56	2	0	0
	47-52	26	7	6
	43-47	1	1	0
Marengo	40-43	4	0	1
	34-40	3	0	1
	28-34	1	0	0
Below Marengo	0-28	7	1	0
Totals	0-86	191	62	126

${ }^{\text {a }}$ Rkm descriptions: 86-Rucherts Camp; 84-Sheep Cr.; 78-Lady Bug Flat CG; 75-Panjab Br.; 73-Cow Camp Bridge; 68-Tucannon CG; 66-Curl Lake; 62-Beaver/Watson Lakes Br.; 59-Tucannon Hatchery Intake/Adult Trap; 56-HMA Boundary Fence; 52-Br. 14; 47-Br. 12; 43-Br. 10; 40-Marengo Br.; 34King Grade Br.; 28-Enrich Br. (Brines Rd.).

Historical Trends in Natural Spawning

Two general spawning trends were evident (Figure 2) from the program’s inception in 1985 through 1999:

1) The proportion of the total number of redds occurring below the adult trap increased; and
2) The density of redds (redds/km) decreased in the Tucannon River.

In part, this resulted from a greater emphasis on broodstock collection in an effort to reduce the risk of extinction. However, increases in the SAR rates beginning with the 1995 brood have subsequently resulted in increased spawning above the trap and higher redd densities (Figure 2; Table 7). Also, moving the release location from TFH (rkm 57.7) upstream to Curl Lake AP (rkm 65.6) in 1999 appears to have affected the spawning distribution, with higher numbers of fish and redds in the Wilderness and HMA strata compared to previous years (Table 7).

Figure 2. Number of redds/km and percentage of redds above the adult trap on the Tucannon River, 19862015.

Table 7. Number of spring Chinook salmon redds and redds/km (in parenthesis) by stratum and year, and the number and percent of redds above and below the TFH adult trap in the Tucannon River, 1985-2015.

Strata ${ }^{\text {a }}$						TFH Adult Trap ${ }^{\text {b }}$			
Year	Wilderness	HMA	Hartsock	Marengo	$\text { Redds }{ }^{\text {b }}$	Above	\%	Below	\%
$1985{ }^{\text {c }}$	101 (9.2)	165 (8.7)	50 (3.1)	-	316	-	-	-	-
1986	53 (4.5)	117 (6.2)	29 (1.9)	0 (0.0)	200	163	81.5	37	18.5
1987	15 (1.3)	140 (7.4)	30 (1.9)	-	185	149	80.5	36	19.5
1988	18 (1.5)	79 (4.2)	20 (1.3)	-	117	90	76.9	27	23.1
1989	29 (2.5)	54 (2.8)	23 (1.5)	-	106	74	69.8	32	30.2
1990	20 (1.7)	94 (4.9)	64 (4.1)	2 (0.3)	180	96	53.3	84	46.7
1991	3 (0.3)	67 (2.9)	18 (1.1)	2 (0.3)	90	40	44.4	50	55.6
1992	17 (1.4)	151 (7.9)	31 (2.0)	1 (0.2)	200	130	65.0	70	35.0
1993	34 (3.4)	123 (6.5)	34 (2.2)	1 (0.2)	192	131	68.2	61	31.8
1994	1 (0.1)	10 (0.5)	28 (1.8)	5 (0.9)	44	2	4.5	42	95.5
1995	0 (0.0)	2 (0.1)	3 (0.2)	0 (0.0)	5	0	0.0	5	100.0
1996	1 (0.1)	33 (1.7)	34 (2.2)	1 (0.2)	69	11	16.2	58	83.8
1997	2 (0.2)	43 (2.3)	27 (1.7)	1 (0.2)	73	30	41.1	43	58.9
1998	0 (0.0)	3 (0.2)	20 (1.3)	3 (0.5)	26	3	11.5	23	88.5
1999	1 (0.1)	34 (1.8)	6 (0.4)	0 (0.0)	41	3	7.3	38	92.7
2000	4 (0.4)	68 (3.6)	20 (1.3)	0 (0.0)	92	45	48.9	47	51.1
2001	22 (2.0)	194 (10.2)	80 (5.0)	1 (0.1)	297	166	55.9	131	44.1
2002	29 (2.6)	214 (11.3)	45 (2.8)	11 (0.9)	299	200	66.9	99	33.1
2003	3 (0.3)	89 (4.7)	26 (1.6)	0 (0.0)	118	61	51.7	57	48.3
2004	24 (2.2)	119 (6.3)	17 (1.1)	0 (0.0)	160	112	70.0	48	30.0
2005	4 (0.4)	71 (3.7)	27 (1.7)	5 (0.4)	107	46	43.0	61	57.0
2006	2 (0.2)	81 (4.3)	17 (1.1)	1 (0.1)	109	58	53.2	51	46.8
2007	2 (0.2)	63 (3.3)	16 (1.0)	0 (0.0)	81	32	39.5	49	60.5
2008	30 (2.7)	146 (7.7)	22 (1.4)	1 (0.1)	199	141	70.9	58	29.1
2009	67 (6.1)	329 (17.3)	52 (3.3)	3 (0.3)	451	292	64.7	159	35.3
2010	83 (7.5)	289 (15.2)	106 (6.6)	3 (0.3)	481	297	61.7	184	38.3
2011	35 (3.2)	196 (10.3)	53 (3.3)	6 (0.5)	297	165	55.6	132	44.4
2012	11 (1.0)	132 (6.9)	23 (1.4)	0 (0.0)	169	84	49.7	85	50.3
2013	3 (0.3)	42 (2.2)	15 (0.9)	0 (0.0)	64	25	39.1	39	60.9
2014	26 (2.4)	70 (3.7)	25 (1.6)	1 (0.1)	124	83	66.9	41	33.1
2015	56 (5.1)	91 (4.8)	33 (2.1)	4 (0.3)	191	120	62.8	71	37.2

Note: - indicates the river was not surveyed in that section during that year.
${ }^{\text {a }}$ Excludes redds found below the Marengo stratum.
${ }^{\mathrm{b}}$ Includes all redds counted during redd surveys.
${ }^{\text {c }}$ The 1985 redd counts were revised to account for all redds during the spawning season (WDFW 2015).

Histology Sampling

Tissue and organ samples were collected from five in-river pre-spawn mortalities and five prespawn mortalities from fish that were held at LFH for adult outplanting (Table 8). The preserved organ samples were submitted to the Washington Animal Disease Diagnostic Laboratory (WADDL) for histopathology examination. Kidney samples were also collected and submitted to the WDFW Fish Health Lab to test for Bacterial Kidney Disease (BKD) which is caused by the bacterium Renibacterium salmonirum. Samples were tested for BKD by using the Enzyme Linked Immunosorbent Assay (ELISA) technique. Samples were categorized as "Below Low" (<0.10 Optical Density or O.D.), "Low" (0.11-0.19 O.D.), "Moderate" (0.20-0.45 O.D.), and "High" (>0.45 O.D.).

The histological examination of the in-river pre-spawn mortalities suggested that mortality was due to enteric myxosporidiosis in all fish (Dr. Danielle Nelson, WADDL, personal communication). The likely pathogen was Ceratonova (formerly Ceratomyxa) shasta. Significant enteric parasitism with cestodes in most samples and nematodes in one fish also likely contributed to mortality. Pathogens would have been amplified by the warm river water temperatures (Steve Roberts, WDFW Fish Health Specialist, personal communication). Kidney samples showed only below low levels of BKD (Table 8).

Samples collected from the pre-spawn mortalities of fish held at LFH for adult outplanting showed complex causes of mortality, including BKD in two fish and one fish (LF-CHS-02) with furunculosis (caused by Aeromonas salmonicida). Ceratonova shasta was found in all of the pre-spawn mortalities from the adult outplant group. Holding fish at LFH on cool well water and formalin treatments likely suppressed fungal and gill bacterial pathogens (Steve Roberts, WDFW Fish Health Specialist, personal communication).

Table 8. Pre-spawn mortalities from both the Tucannon River and from adults held for outplanting at LFH that were used for histology sampling during 2015.

I.D.	Date	Origin	Sex	FKL (mm)	CWT	Age	ELISA Value
In-River Samples							
TU-CHS-01	$6 / 5 / 15$	H	F	73	$64 / 64 / 41$	4	Below Low
TU-CHS-02	$6 / 5 / 15$	N	F	74	None	4	Below Low
TU-CHS-03	$6 / 5 / 15$	H	M	87	$63 / 60 / 75$	5	Below Low
TU-CHS-04	$6 / 5 / 15$	H	M	75	$63 / 64 / 41$	4	Below Low
TU-CHS-05	$6 / 5 / 15$	H	M	66	$63 / 64 / 41$	4	Below Low
Samples from Adults Held for Outplanting at LFH							
LF-CHS-01							$6 / 4 / 15$
LF-CHS-02	$7 / 8 / 15$	H	N	F	72	$63 / 64 / 41$	4
LF-CHS-03	$7 / 13 / 15$	N	F	86	None	5	Below Low
LF-CHS-04	$7 / 15 / 15$	N	F	82	None	4	Below Low
LF-CHS-05	$7 / 27 / 15$	H	M	64.5	None	4	Below Low

Genetic Sampling

During 2015, we collected 228 DNA samples (tissue samples) from hatchery broodstock and carcasses collected from the spawning grounds (149 natural origin, 69 hatchery supplementation, and 10 hatchery origin strays). These samples were sent to the WDFW genetics lab in Olympia, Washington for storage. Genotypes, allele frequencies, and tissue samples from previous sampling years are available from WDFW's Genetics Laboratory.

Age Composition, Length Comparisons, and Fecundity

We determine the age composition of each year's returning adults from scale samples of natural origin fish, and both scales and CWTs from hatchery-origin fish. This enables us to annually compare ages of natural and hatchery-reared fish, and to examine trends and variability in age structure. Overall, hatchery origin fish return at a younger age than natural origin fish and have fewer age-5 fish in the population (Figure 3). This difference is likely due to larger size-atrelease that results in earlier maturation (hatchery origin smolts are generally $25-30 \mathrm{~mm}$ greater in length than natural smolts). The age composition for natural origin fish that returned in 2015 had more age-4 and fewer age-5 fish compared to the historical age composition (Figure 3). The hatchery origin component of the population also had more age- 4 and fewer age- 5 fish than the historical composition. The age composition by brood year for natural and hatchery origin fish is found in Appendix C.

Figure 3. Historical (1985-2014), and 2015 age composition (run year) for spring Chinook in the Tucannon River.

Another metric monitored on returning adult natural and hatchery origin fish is size at age, measured as the mean post-orbital to hypural-plate (POH) length. We examined size at age for returns for age-4 fish using multiple comparison analysis from 1985-2015 and found a significant difference ($P<0.05$) in mean POH length between natural and hatchery-origin female, and natural and hatchery-origin male spring Chinook salmon (Figure 4).

Figure 4. Mean post-orbital to hypural-plate (POH) length comparisons between age-4 natural and hatcheryorigin males (NM and HM) and natural and hatchery-origin females (NF and HF) with $\mathbf{9 5 \%}$ confidence intervals for the years 1985-2015.

To estimate fecundities (number of eggs/female) from the 2015 return year, dead eggs were counted for each female and a subsample of 100 live eyed-eggs was weighed. The total mass of live eggs was also weighed, and divided by the average weight per egg to yield total number of live eggs. This estimate was decreased by 4% to compensate for adherence of water on the eggs (WDFW Snake River Lab, unpublished data). Fecundities of natural and hatchery origin fish from the Tucannon River program have been documented since 1990 (Table 9). We performed an analysis of variance to determine if there were differences in mean fecundities of hatchery and natural origin fish. The significance level for all statistical tests was 0.05 . Natural origin females were significantly more fecund than hatchery origin fish for both age-4 ($P<0.001$) and age-5 fish ($P<0.001$).

Gallinat and Chang (2013) examined the effects of hatchery rearing on selected phenotypic traits of female Tucannon River spring Chinook salmon. They found that hatchery origin females had significantly lower fecundity than natural origin fish after correcting for body size. They also observed that the progeny of captive-reared broodstock, released as smolts and recaptured as returning age-4 adults, had a size and fecundity distribution that was similar to the hatchery-
origin adults, suggesting that the decrease in fecundity was related to hatchery rearing and not a genetically linked trait.

Table 9. Average number of eggs/female (\mathbf{n}, SD) by age group of Tucannon River natural and hatchery origin broodstock, 1990-2015 (partial spawned females are excluded).

Year	Age 4				Age 5			
	Natural		Hatchery		Natural		Hatchery	
1990	3,691	$(13,577.3)$	2,795	$(18,708.0)$	4,383	$(8,772.4)$	No	Fish
1991	3,140	(5, 363.3)	2,649	$(9,600.8)$	4,252	$(11,776.0)$	3,052	$(1,000.0)$
1992	3,736	$(16,588.3)$	3,286	$(25,645.1)$	4,800	$(2,992.8)$	3,545	$(1,000.0)$
1993	3,267	$(4,457.9)$	3,456	$(5,615.4)$	4,470	$(2,831.6)$	4,129	$(1,000.0)$
1994	3,688	$(13,733.9)$	3,280	$(11,630.3)$	4,848	$(8,945.8)$	3,352	$(10,705.9)$
1995	No	Fish	3,584	$(14,766.4)$	5,284	$(6,1,361.2)$	3,889	$(1,000.0)$
1996	3,510	$(17,534.3)$	2,853	$(18,502.3)$	3,617	$(1,000.0)$		Fish
1997	3,487	$(15,443.1)$	3,290	$(24,923.2)$	4,326	$(3,290.8)$	No	Fish
1998	4,204	(1, 000.0)	2,779	(7, 405.5)	4,017	$(28,680.5)$	3,333	$(6,585.2)$
1999	No	Fish	3,121	$(34,445.4)$	No	Fish	3,850	$(1,000.0)$
2000	4,144	$(2,1,571.2)$	3,320	$(34,553.6)$	3,618	$(1,000.0)$	4,208	$(1,000.0)$
2001	3,612	$(27,518.1)$	3,225	$(24,705.4)$	No	Fish	3,585	$(2,1,191.5)$
2002	3,584	$(14,740.7)$	3,368	$(24,563.7)$	4,774	$(7,429.1)$	No	Fish
2003	3,342	$(10,778.0)$	2,723	$(2,151.3)$	4,428	$(7,966.3)$	3,984	(17, 795.9)
2004	3,376	$(26,700.5)$	2,628	$(17,397.8)$	5,191	$(1,000.0)$	2,151	$(1,000.0)$
2005	3,399	$(18,545.9)$	2,903	$(22,654.2)$	4,734	(7, 1,025.0)	No	Fish
2006	2,857	$(17,559.1)$	2,590	$(26,589.8)$	3,397	$(1,000.0)$	4,319	$(1,000.0)$
2007	3,450	$(14,721.1)$	2,679	$(6,422.7)$	4,310	(12, 1,158.0)	3,440	$(2,997.7)$
2008	3,698	$(16,618.9)$	3,018	$(40,501.3)$	4,285	$(1,000.0)$	4,430	$(1,000.0)$
2009	3,469	$(34,628.9)$	3,267	$(52,641.3)$	4,601	$(6,753.6)$		Fish
2010	3,579	$(38,594.8)$	3,195	$(44,640.9)$	No	Fish	No	Fish
2011	3,513	$(18,613.0)$	3,061	$(30,615.1)$	4,709	$(27,755.2)$	3,954	$(11,731.3)$
2012	2,998	$(40,618.1)$	2,539	$(45,462.5)$	4,371	$(5,478.0)$	3,105	$(2,356.4)$
2013	3,479	$(34,574.8)$	3,145	$(28,592.9)$	4,702	$(12,931.5)$	3,746	$(2,185.3)$
2014	3,622	$(34,501.3)$	3,280	$(26,545.6)$	4,575	$(3,807.3)$	3,558	$(1,000.0)$
2015	3,683	$(47,629.5)$	3,468	$(20,671.8)$	4,755	$(8,818.0)$		Fish
Mean		3,481		3,081		4,494		3,704
SD		636.3		653.3		854.5		741.1

Arrival and Spawn Timing Trends

We monitor peak arrival and spawn timing to determine whether the hatchery program has caused a shift (Table 10). Peak arrival dates were based on the greatest number of fish trapped on a single day. Peak spawn in the hatchery was determined by the day when the most females were spawned. Peak spawning in the river was determined by the highest weekly redd count.

Peak arrival to the adult trap for both natural and hatchery origin fish was earlier than normal during 2015 and it is unknown if this was drought related (Table 10). However, the dates were within the historical range (Table 10). Peak spawning in the hatchery was close to the historical means and was 8 September for hatchery fish and 15 September for natural origin fish (Table 10). The duration of spawning in the hatchery was similar to the historical mean. Spawning in the river peaked on 9 September. The duration of active spawning in the Tucannon River was within the range found from previous years.

Natural origin fish typically arrive earlier and at a slightly faster rate than hatchery origin fish (Figure 5). On average, about half of the total run of hatchery origin fish typically arrives at the adult trap by 12 June (Figure 5). After the end of June, the hatchery fish tend to arrive at the adult trap at a slightly faster rate than natural origin fish.

Table 10. Peak dates of arrival of natural and hatchery salmon to the TFH adult trap and peak (date) and duration (number of days) for spawning in the hatchery and river, 1986-2015.

Year	Peak Arrival at Trap		Spawning in Hatchery			Spawning in River	
	Natural	Hatchery	Natural	Hatchery	Duration	Combined	Duration
1986	5/27	-	9/17	-	31	9/16	36
1987	5/15	-	9/15	-	29	9/23	35
1988	5/24	-	9/07	-	22	9/17	35
1989	6/06	6/12	9/15	9/12	29	9/13	36
1990	5/22	5/23	9/04	9/11	36	9/12	42
1991	6/11	6/04	9/10	9/10	29	9/18	35
1992	5/18	5/21	9/15	9/08	28	9/09	44
1993	5/31	5/27	9/13	9/07	30	9/08	52
1994	5/25	5/27	9/13	9/13	22	9/15	29
$1995{ }^{\text {a }}$	-	6/08	9/13	9/13	30	9/12	21
1996	6/06	6/20	9/17	9/10	21	9/18	35
1997	6/15	6/17	9/09	9/16	30	9/17	50
1998	6/03	6/16	9/08	9/16	36	9/17	16
$1999{ }^{\text {a }}$	-	6/16	9/07	9/14	22	9/16	23
2000	6/06	5/22	-	9/05	22	9/13	30
2001	5/23	5/23	9/11	9/04	20	9/12	35
2002	5/29	5/29	9/10	9/03	22	9/11	42
2003	5/25	5/25	9/09	9/02	36	9/12	37
2004	6/04	6/02	9/14	9/07	29	9/08	30
2005	6/01	5/31	9/06	9/06	28	9/14	28
2006	6/12	6/09	9/12	9/12	28	9/8	--- ${ }^{\text {b }}$
2007	6/04	6/04	9/18	9/04	22	9/12	30
2008	6/16	6/20	9/09	9/16	21	9/11	34
2009	6/01	6/15	9/15	9/08	29	9/10	37
2010	6/04	6/03	9/14	9/08	$14^{\text {c }}$	9/10	33
2011	6/08	6/23	9/6	9/06	22	9/16	33
2012	5/30	6/02	9/11	9/18	22	9/12	36
2013	6/06	6/06	9/10	9/10	29	9/11	42
2014	5/27	6/04	9/09	9/09	$22^{\text {c }}$	9/11	35
Mean	6/01	6/05	9/12	9/10	26	9/13	35
2015	5/18	5/20	9/15	9/08	29	9/09	44

${ }^{\text {a }}$ Too few natural salmon were trapped in 1995 and 1999 to determine peak arrival.
${ }^{\mathrm{b}}$ Access restrictions during the Columbia Complex Forest Fire prohibited spawning ground surveys during the beginning of spawning.
${ }^{\text {c }}$ Unspawned females determined to be in excess of eggtake goals were returned to the river for natural spawning which may have truncated duration of spawning in the hatchery.

Figure 5. Cumulative run timing by date at the Tucannon Fish Hatchery adult trap on the Tucannon River for both natural and hatchery origin Tucannon River spring Chinook salmon, 1994-2015.

Total Run-Size

Redd counts have a strong direct relationship to total run-size entering the Tucannon River and passage of adult salmon at the TFH adult trap (Bugert et al. 1991). Numbers of fish passed upstream of the adult trap were adjusted to account for fish that were able to bypass the trap during the time it was in operation. We calculated separate bypass rates for both jacks and adults since their ability to bypass the trap has historically been different. Based on the presence or absence of left operculum punches from fish recovered during spawning ground surveys we calculated the number of jacks and adults that bypassed the adult trap by solving for the following equation:

Number of fish ${ }^{4}$ that $=$ Number of carcasses without operculum punches x Fish passed above trap bypassed adult trap Number of carcasses with operculum punches

Based on 2015 spawning ground carcass operculum punch recoveries, no jacks and 28 adult spring Chinook salmon were able to bypass the adult trap. We added the calculated number of fish that bypassed the trap (0 jacks, 28 adults) to the number of fish that were passed upstream by hatchery staff (205 jacks, 269 adults), and adult outplants (12 jacks, 220 adults) for a total of 734 fish above the trap. The use of adult outplants confounded our typical calculation of the number of fish below the adult trap since their survival was higher than fish that were passed upstream. The number of fish below the trap was calculated by the number of redds below the trap (71), multiplied by the fish/redd based on the sex ratio of fish passed upstream (3.92), divided by the estimated in-stream survival of fish (0.32) calculated from the carcass recovery rates. Therefore, the estimated number of fish below the trap was 870 fish.

The run-size estimate for 2015 was calculated by adding the estimated number of fish upstream of the TFH adult trap (734), the estimated fish below the weir (870), the number of pre-spawn mortalities of adults held at LFH (10), the number of trap mortalities (0) and stray fish killed at the trap (32), and the number of broodstock collected (131) (Table 11). Run-size for 2015 was estimated to be 1,777 fish (667 natural adults, 65 natural jacks, and 855 hatchery adults, 190 hatchery-origin jacks). Historical breakdowns are provided in Appendix D.

[^3]Table 11. Estimated spring Chinook salmon run to the Tucannon River and recovered pre-spawn mortalities (PSM), 1985-2015.

Year ${ }^{\text {a }}$	Total Redds	Fish/Redd Ratio ${ }^{\text {b }}$	Potential Spawners	Broodstock Collected	Trap/Holding Mortalities ${ }^{\text {© }}$	Total Run-Size	River PSM $^{\text {d }}$	Percent Natural
$1985{ }^{\text {e }}$	316	2.60	822	22	0	844	0	100
1986	200	2.60	520	116	0	636	0	100
1987	185	2.60	481	101	0	582	0	100
1988	117	2.60	304	125	0	429	0	96
1989	106	2.60	276	169	0	445	0	76
1990	180	3.39	610	135	1	746	7	66
1991	90	4.33	390	130	0	520	8	50
1992	200	2.82	564	97	11	672	81	58
1993	192	2.27	436	97	0	533	56	57
1994	44	1.59	70	70	0	140	0	70
1995	5	2.20	11	43	0	54	0	39
1996	69	2.00	138	80	5	223	29	64
1997	73	2.00	146	97	0	243	108	50
1998	26	1.94	51	89	0	140	4	61
1999	41	2.60	107	136	1	244	1	1
2000	92	2.60	239	81	17	337	2	24
2001	297	3.00	891	106	0	997	12	71
2002	299	3.00	897	107	0	1,004	1	35
2003	118	3.10	366	77	0	443	1	56
2004	160	3.00	480	92	0	572	1	70
2005	107	3.10	332	100	3	435	0	69
2006	109	1.60	174	89	3	266	0	57
2007	81	3.10	250	88	6	344	0	58
2008	199	4.10	1,056	134	1	1,191	0	45
2009	451	3.70	1,676	177	7	1,860	2	40
2010	481	4.87	2,341	173	9	2,523	2	57
2011	297	3.79	1,128	166	6	1,300	0	58
2012	169	6.30	1,059	170	6	1,235	4	66
2013	64	14.96	955	158	2	1,115	2	67
2014	124	7.70	959	127	0	1,086	18	83
2015	191	$6.10{ }^{\text {f }}$	1,604	131	42	1,777	32	41

${ }^{\text {a }}$ In 1994, 1995, 1998 and 1999, fish were not passed upstream, and in 1996 and 1997, high pre-spawning mortality occurred in fish passed above the trap, therefore; fish/redd ratio was based on the sex ratio of broodstock collected.
b From 1985-1989 the TFH trap was temporary, thereby underestimating total fish passed upstream of the trap. The 1985-1989 fish/redd ratios were calculated from the 1990-1993 average, excluding 1991 because of a large jack run.
c This total includes stray fish that are killed at the trap and pre-spawn mortalities of fish held at LFH for adult outplanting.
d Effort in looking for pre-spawn mortalities has varied from year to year with more effort expended during years with poor conditions or large runs.
${ }^{\text {e }}$ The 1985 redd counts were revised on the SASI database to account for all redds during the spawning season (WDFW 2015).
f The fish/redd ratio was not used to estimate the number of fish below the adult trap due to survival differences between outplanted fish and fish that were passed upstream.

Spawning Escapement

To calculate spawning escapement, we assume one redd per female (Murdoch et al. 2009) and multiply the number of redds by the sex ratio of the pre-spawning population that was collected at the adult trap (i.e., no carcass collection bias issues). This should provide a more accurate expansion method than simply applying a constant value based on assumptions, or data from other studies, since it incorporates the natural variability that occurs in most populations (Murdoch et al. 2010). Because spawner distribution of hatchery and natural origin fish may be different, we expanded redds by reach and estimate natural and hatchery fish by reach based on carcass recoveries. The total for all reaches equals the spawning escapement.

Sex ratio from the adult trap was only available from 2000 to present. For 1985 to 1999, we used corrected carcass data based on the methodology of Murdoch et al. (2010). For years when the corrected carcass data produced clear outliers, or produced spawning escapements greater than the run escapement we used data cited by Meekin (1967) that cited an average of 2.20 adults/redd and proportionately adjusted that figure up during years with high jack returns. The spawning escapement for 2015 was 523 fish (173 natural-origin, 350 hatchery-origin) based on 2.74 fish per redd. The estimated spawning escapement for 1985 to 2015 is found in Table 12.

Table 12. Estimated spawning escapement and the calculation methodology used for the 1985 to 2015 run years.

$\begin{aligned} & \hline \text { Run } \\ & \text { Year } \end{aligned}$	Number of Redds	Spawning Escapement	Natural:Hatchery Ratio	Fish/Redd	Methodology
$1985{ }^{\text {a }}$	316	695	1.000:0.000	2.20	Meekin (1967)
1986	200	440	1.000:0.000	2.20	Meekin (1967)
1987	185	407	1.000:0.000	2.20	Meekin (1967)
1988	117	257	1.000:0.000	2.20	Meekin (1967)
1989	106	276	0.988:0.012	2.60	Meekin (1967)
1990	180	572	0.785:0.215	3.18	Corrected Carcasses
1991	90	291	0.677:0.323	3.23	Corrected Carcasses
1992	200	476	0.641:0.359	2.38	Corrected Carcasses
1993	192	397	0.617:0.383	2.07	Corrected Carcasses
1994	44	97	1.000:0.000	2.20	Meekin (1967)
1995	5	27	1.000:0.000	5.30	Corrected Carcasses
1996	69	152	0.767:0.233	2.20	Meekin (1967)
1997	73	105	0.644:0.356	1.44	Corrected Carcasses
1998	26	60	0.739:0.261	2.30	Meekin (1967)
1999	41	160	0.023:0.977	3.91	Corrected Carcasses
2000	92	201	0.307:0.693	2.18	Sex ratio at Adult Trap
2001	297	766	0.801:0.199	2.58	Sex ratio at Adult Trap
2002	299	568	0.395:0.605	1.90	Sex ratio at Adult Trap
2003	118	329	0.742:0.258	2.79	Sex ratio at Adult Trap
2004	160	346	0.826:0.174	2.16	Sex ratio at Adult Trap
2005	107	264	0.804:0.196	2.47	Sex ratio at Adult Trap
2006	109	202	0.759:0.241	1.85	Sex ratio at Adult Trap
2007	81	211	0.776:0.224	2.60	Sex ratio at Adult Trap
2008	199	796	0.610:0.390	4.00	Sex ratio at Adult Trap
2009	451	1191	0.507:0.493	2.64	Sex ratio at Adult Trap
2010	481	938	0.578:0.422	1.95	Sex ratio at Adult Trap
2011	297	849	0.703:0.297	2.86	Sex ratio at Adult Trap
2012	169	335	0.698:0.302	1.98	Sex ratio at Adult Trap
2013	64	170	0.697:0.303	2.66	Sex ratio at Adult Trap
2014	124	294	0.726:0.274	2.37	Sex ratio at Adult Trap
2015	191	523	0.330:0.670	2.74	Sex ratio at Adult Trap

${ }^{\bar{a}}$ The 1985 redd counts were revised on the SASI database to account for all redds during the spawning season (WDFW 2015).

Coded-Wire Tag Sampling

Broodstock collection, pre-spawn mortalities, and carcasses recovered during spawning ground surveys provide representatives of the annual run that can be sampled for CWT study groups (Table 13). In 2015, based on the estimated escapement of fish to the river, we sampled approximately 20% of the run (Table 14).

Table 13. Coded-wire tag codes of hatchery salmon sampled at LFH and the Tucannon River, 2015.

CWT Code	Broodstock Collected			\quadAdult Outplants Pre-spawn Mortality	Recovered in Tucannon River			Totals
	Died in Pond	Killed Outright	Spawned		Dead in Trap	Pre-spawn Mortality	Spawned	
63-65-85						2	20	22
63-65-86						1	1	2
63-64-41			20	1		8	72	101
63-64-42			2	2			3	7
63-60-75				1		1		2
Lost			1				4	5
-Strays-								
09-07-29					3			3
09-05-52							1	1
09-06-43			2		3		1	6
09-06-52	1		4			3	7	15
AD/No Wire ${ }^{\text {b }}$					26		2	28
Total	1	0	29	4	32	15	111	192

${ }^{\text {a }}$ These are pre-spawn mortalities from the adult outplant group that died during holding at LFH.
${ }^{\mathrm{b}}$ Adipose clipped strays are killed outright at the trap.

Table 14. Spring Chinook salmon (natural and hatchery) sampled from the Tucannon River, 2015.

	$\mathbf{2 0 1 5}$		
	Natural	Hatchery	Total
Total escapement to river	732	1,045	1,777
Broodstock collected	101	30	131
Fish dead in adult trap			
Adult outplant pre-spawn mortalities	0	32	32
Total hatchery sample	6	4	10
Total fish left in river	107	66	173
In-river pre-spawn mortalities observed	625	979	1,604
Spawned carcasses recovered	13	15	28
Total river sample	49	111	160
Carcasses sampled	62	126	188

${ }^{\mathrm{a}}$ These fish were strays that were intentionally killed.

Stray Salmon into the Tucannon River

Spring Chinook from other river systems (strays) are periodically recovered in the Tucannon River, though generally at a low proportion of the total run (Bumgarner et al. 2000). However, Umatilla River hatchery strays accounted for 8 and 12\% of the total Tucannon River run in 1999 and 2000, respectively (Gallinat et al. 2001). Increased strays, particularly from the Umatilla River, was a concern since it exceeded the 5% stray proportion of hatchery fish deemed acceptable by NOAA Fisheries for Primary Contributing Populations, and is contrary to fish management intent for the Tucannon River. In addition, the Oregon Department of Fish and Wildlife (ODFW) and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) did not mark a portion of Umatilla River origin spring Chinook with an RV or LV fin clip (65-70\% of releases), or CWT for the 1997-1999 brood years. Because of that action, some stray fish that returned from those brood years were physically indistinguishable from natural origin Tucannon River spring Chinook. Scale samples were collected from adults in those brood years to determine hatchery-origin fish based on scale pattern analysis. However, we are unable to differentiate between unmarked Tucannon fish and unmarked strays based on scale patterns. Beginning with the 2000 BY, Umatilla River hatchery-origin spring Chinook were 100% marked (adipose clipped), however, the implementation of a "stepping stone" hatchery management protocol for the Umatilla Hatchery Program has resulted in a portion of Umatilla Hatchery releases being unclipped beginning with the 2009 BY . This hinders our ability to selectively remove stray hatchery fish from the broodstock, and the river at the TFH adult trap. We will continue to monitor the Tucannon River and emphasize the need for external marks and CWTs for Umatilla River releases.

Fifty-three strays (one Imnaha River, 24 Umatilla River, and 28 AD clip/no wire) were recovered during 2015 (Appendix E). Thirty-two of the strays were killed outright at the trap (three CWT 090643, three CWT 090729, and 26 AD clip/no wire), 14 were recovered during spawning ground surveys (one CWT 090552, one CWT 090643, 10 CWT 090652, and two AD clip/no wire), and seven were inadvertently collected for broodstock [one pre-spawn mortality CWT 090652, and six spawned at LFH (two CWT 090643 and four CWT 090652)]. After expansions, strays accounted for an estimated 12.0\% of the total 2015 run (Appendix E).

The increased use of passive integrated transponder (PIT) tags by fish and wildlife agencies and the utilization of in-stream PIT tag arrays in the Tucannon River have permitted us to identify the origin of some stray PIT tagged spring Chinook during 2015. A total of twenty-two fish originally PIT tagged at locations other than the Tucannon River had their last known detections in the Tucannon River (Table 15). The majority of these strays (21) were fish of unknown origin that were tagged as adults at Lower Granite Dam and eventually returned back downstream and entered the Tucannon River (Table 15). These fish could be Tucannon origin fish that overshot
the river and returned back, however their origin is unknown. One hatchery origin fish from the Umatilla River was detected at the Upper Tucannon River array (Table 15).

Table 15. Final Tucannon River PIT tag array detections of spring Chinook originally tagged at locations other than the Tucannon River (strays) during 2015.

PIT Tag	Origin	Tag Date	Life Stage At Tagging	Tag Release Location	Detection Date	Tucannon Site
384.3B23ACDCF0	N	$5 / 18 / 15$	Adult	Lower Granite Dam	$5 / 31 / 15$	UTR
384.3B23AD0B10	N	$6 / 01 / 15$	Adult	Lower Granite Dam	$6 / 12 / 15$	UTR
384.3B23AD385C	N	$5 / 14 / 15$	Adult	Lower Granite Dam	$5 / 22 / 15$	UTR
384.3B23AD4EEA	H	$5 / 14 / 15$	Adult	Lower Granite Dam	$5 / 24 / 15$	UTR
384.3B23AD5660	N	$5 / 14 / 15$	Adult	Lower Granite Dam	$5 / 29 / 15$	UTR
3D9.1C2D705154	H	$4 / 16 / 13$	Juvenile	Umatilla River	$5 / 17 / 15$	UTR
3DD.00773A26D8	N	$5 / 26 / 15$	Adult	Lower Granite Dam	$6 / 06 / 15$	UTR
3DD.00773A9A7C	N	$4 / 29 / 15$	Adult	Lower Granite Dam	$5 / 12 / 15$	UTR
3DD.00773AA2FB	N	$5 / 07 / 15$	Adult	Lower Granite Dam	$5 / 25 / 15$	UTR
3DD.00773AAB1A	N	$5 / 07 / 15$	Adult	Lower Granite Dam	$5 / 23 / 15$	UTR
3DD.00773AB8BB	N	$5 / 07 / 15$	Adult	Lower Granite Dam	$5 / 27 / 15$	UTR
3DD.00773AB8C9	N	$5 / 06 / 15$	Adult	Lower Granite Dam	$5 / 23 / 15$	UTR
3DD.00773AC0C9	N	$5 / 26 / 15$	Adult	Lower Granite Dam	$6 / 07 / 15$	UTR
3DD.00773AC5D6	N	$5 / 08 / 15$	Adult	Lower Granite Dam	$5 / 18 / 15$	UTR
3DD.00773AC8DB	N	$5 / 27 / 15$	Adult	Lower Granite Dam	$6 / 07 / 15$	UTR
3DD.00773AC9E1	N	$5 / 19 / 15$	Adult	Lower Granite Dam	$5 / 31 / 15$	UTR
3DD.00773AD609	N	$6 / 16 / 15$	Adult	Lower Granite Dam	$7 / 28 / 15$	MTR
3DD.00773ADDF1	H	$5 / 26 / 15$	Adult	Lower Granite Dam	$6 / 08 / 15$	UTR
3DD.00773ADF93	H	$5 / 04 / 15$	Adult	Lower Granite Dam	$5 / 22 / 15$	UTR
3DD.00773AE8B0	N	$5 / 11 / 15$	Adult	Lower Granite Dam	$5 / 26 / 15$	UTR
3DD.00773AEFDB	H	$5 / 15 / 15$	Adult	Lower Granite Dam	$5 / 19 / 15$	MTR
3DD.00773B1E85	H	6/05/15	Adult	Lower Granite Dam	6/17/15	UTR
${ }^{\text {a PIT tag array locations are as follows: LTR - Lower Tucannon River (rkm 2.2), MTR - Middle Tucannon River (rkm 17.8), }}$						
UTR - Upper Tucannon River (rkm 44.4), TFH - Tucannon Fish Hatchery (rkm 59.2).						

Tucannon River Spring Chinook in Asotin Creek

The Major Population Group (MPG) for the lower Snake River includes only the Tucannon River and Asotin Creek populations; both must be viable for ESA recovery of this MPG (or the Tucannon population must be highly viable). The Asotin Creek population is considered to be functionally extirpated (SRSRB 2011). Based on genetic analysis of spring Chinook sampled from Asotin Creek (Blankenship and Mendel 2010), Tucannon River spring Chinook salmon are known to stray to Asotin Creek and contribute to population genetics. To assess the extent of this behavior, we conduct annual spring Chinook spawning ground surveys on Asotin Creek.

Asotin Creek Field Office staff captured seven adult spring Chinook (one of which was a prespawn mortality) at the Asotin Creek weir before the weir was removed on 3 June, 2015 due to declining flows and increasing stream temperatures (Ethan Crawford, WDFW, personal communication). Two known origin PIT tagged spring Chinook salmon were detected at PIT tag arrays in Asotin Creek during 2015. One was a Walla Walla River spring Chinook (natural origin) and the other was a natural origin spring Chinook salmon from the Lemhi River (Idaho). Snake River Lab and Asotin Creek Field Office staff walked known spring Chinook spawning areas in Asotin Creek (rkm 14.6-41.3) on 10 and 18 September, and 2 October, 2015. No redds or fish were observed during 2015, however the section from Lick Creek (rkm 28.6) to the Confluence Bridge (rkm 27.0) was not surveyed, so redds and/or fish may have been missed (Table 16). Historical redd numbers are found in Table 17.

Table 16. Numbers and general locations of spring Chinook salmon redds, live fish observed, and carcasses recovered from Asotin Creek, 2015.

Rkm ${ }^{\text {a }}$	Number of Redds	Live Fish Observed	Carcasses Recovered				
			Natural		Hatchery		Unknown
			Male	Female	Male	Female	
36.5-41.3	0	0	0	0	0	0	0
28.6-36.5	0	0	0	0	0	0	0
27.0-28.6 ${ }^{\text {b }}$	---	---	---	---	---	---	---
22.0-27.0	0	0	0	0	0	0	0
14.6-22.0	0	0	0	0	0	0	0
Totals	0	0	0	0	0	0	0

[^4]Table 17. Historical redd counts in Asotin Creek from 1972-73 and 1984-2015 (WDFW 2016).

Year	Number of Redds	Year	Number of Redds
1972	12	1999	0
1973	13	2000	1
$"$	$"$	2001	4
1984	8	2002	4
1985	1	2003	1
1986	1	2004	13
1987	3	2005	2
1988	1	2006	11
1989	0	2007	3
1990	2	2008	6
1991	0	2009	6
1992	0	2010	5
1993	2	2011	16
1994	0	2012	8
1995	0	2013	2
1996	0	2014	1
1997	1	2015	0
1998	0		

Adult PIT Tag Returns

Four hundred ninety-one Tucannon River spring Chinook adults originally PIT tagged as juveniles have been detected returning to the Columbia River System (Table 18).

Table 18. Number of Tucannon River spring Chinook juvenile fish PIT tagged by origin $(\mathbf{H}=$ hatchery, $\mathbf{N}=$ natural, and CB = captive brood progeny) and calendar year and adult returns detected (\%) in the Columbia River System by origin.

Tag Year	PIT Tagged Hatchery	PIT Tagged Natural	PIT Tagged Captive Brood	Detected H Adult Returns	Detected N Adult Returns	Detected CB Adult Returns
1995	1,292	---	---	1 (0.08\%)	---	---
1996	1,923	---	---	0	---	---
1997	1,984	---	---	2 (0.10\%)	---	---
1998	1,999	---	---	0	---	---
1999	335	374	---	2 (0.60\%)	5 (1.34\%)	---
2000	---	---	---	---	---	---
2001	301	158	---	0	0	---
2002	318	321	---	1 (0.31\%)	3 (0.93\%)	---
2003	1,010	---	1,007	3 (0.30\%)	---	0
2004	1,012	---	1,029	0	---	0
2005	993	93	993	0	1 (1.08\%)	0
2006	1,001	70	1,002	1 (0.10\%)	1 (1.43\%)	0
2007	1,308	504	1,000	3 (0.23\%)	11 (2.18\%)	4 (0.40\%)
2008	4,989	1,915	997	47 (0.94\%)	48 (2.51\%)	6 (0.60\%)
2009	4,987	1,232	---	14 (0.28\%)	17 (1.38\%)	---
2010	15,000	2,800	---	88 (0.59\%)	20 (0.71\%)	---
2011	24,976	5,267	---	47 (0.19\%)	26 (0.49\%)	---
2012	22,982	3,889	---	29 (0.13\%)	23 (0.59\%)	---
2013	14,987	4,026	---	36 (0.24\%)	32 (0.79\%)	---
2014	14,969	660	---	20 (0.13\%)	0	---
Totals	116,366	21,309	6,028	294 (0.25\%)	187 (0.88\%)	10 (0.17\%)

From the detected returns, 105 (21\%) of the returning PIT tagged adults were detected upstream of the Tucannon River (Table 19; Appendix F). Thirty-six of these fish (7\%) had their last detections at or above Lower Granite Dam (Table 19; Appendix F). The overshoot rate has decreased over time and it is unknown whether this is related to changes in smolt release methods (from direct release to acclimation ponds with volitional release), changes in hydropower operations and river flows, changes in the proportion barged downstream, increases in tagging numbers/sample size, or greater detection capabilities in the Tucannon River (Table 19). This does not appear to be a hatchery effect as both natural and hatchery origin fish overshoot the Tucannon River (Table 19). Non-direct homing behavior has been documented for adult Chinook in the Columbia River System (Keefer et al. 2008), and similar percentages of
natural origin spring Chinook from the John Day River have been documented overshooting that river (Jim Ruzycki, ODFW, personal communication). However, more research into these events should be conducted to examine whether they are natural straying occurrences, or if it is related to hydropower operations. The installation of PIT tag arrays in the Tucannon River during the past few years [Lower Tucannon River (LTR) at rkm 2.2-2005, Middle Tucannon River (MTR) at rkm 17.8 and Upper Tucannon River (UTR) at rkm 44.4-2011, and Tucannon Fish Hatchery (TFH) at rkm 59.2 - 2012] have enabled us to document that the majority of the Tucannon spring Chinook that overshoot are able to make it back to the Tucannon River (Table 19). Returning adults overshooting the Tucannon River is a concern, especially if they are unable to return to the Tucannon River, or if they return in a more compromised state (i.e., injuries from additional dam crossings), and may partially explain why this population has been slow to respond to recovery and supplementation actions.

Table 19. Number and origin of PIT tagged Tucannon River spring Chinook adult returns that overshoot the Tucannon River (includes fish that were last detected returning back downstream towards the Tucannon River) and also adults detected at Lower Granite Dam (LGR) that stayed above LGR Dam. Years with installed in-stream PIT tag arrays (2005-2014) are included for comparison.

Tag	\# Adult Detections Bonneville	Initial \# Adults Above Tucannon R.	Initial Overshoot Rate	Percent Natural	Percent Hatchery	\# Adults Above LGR	Percent Natural	Percent Hatchery	Overshoot Rate (\%)
$1995-1999$	10	8	80.0	37.5	62.5	8	37.5	62.5	80.0
$2000-2004$	7	2	28.6	50.0	50.0	2	50.0	50.0	28.6
$2005-2009$	153	20	13.1	35.0	65.0	14	42.9	57.1	9.2
$2010-2014$	321	75	23.4	38.7	61.3	12	41.7	58.3	3.7
Totals	$\mathbf{4 9 1}$	$\mathbf{1 0 5}$	$\mathbf{2 1 . 4 \%}$	$\mathbf{3 8 . 1 \%}$	$\mathbf{6 1 . 9 \%}$	$\mathbf{3 6}$	$\mathbf{4 1 . 7 \%}$	$\mathbf{5 8 . 3 \%}$	$\mathbf{7 . 3 \%}$
$\mathbf{2 0 0 5 - 2 0 1 4}$	$\mathbf{4 7 4}$	$\mathbf{9 5}$	$\mathbf{2 0 . 0 \%}$			$\mathbf{2 6}$			$\mathbf{5 . 5 \%}$

Juvenile Salmon Evaluation

Hatchery Rearing, Marking, and Release

Supplementation juveniles $(221,828)$ were tagged with CWT $(63 / 68 / 84)$ from 28 May to 3 June, 2015. Fish were transferred from LFH to TFH between 12 and 19 October, 2015. The target release size was increased from 30 g fish (15 fpp) to 38 g fish (12 fpp) beginning with the 2011 BY based on higher survival estimates through the hydropower system for larger fish from the size at release study.

Brood year 2014 fish were sampled twice by Evaluations staff during the rearing cycle (Table 20). During January, fish were sampled for length, weight, precocity and mark quality, and were PIT tagged for outmigration and adult return comparisons (target 15,000) before transfer to Curl Lake AP. The 2014 BY fish were transported to Curl Lake on 29 February, 2016 for acclimation and volitional release. Length, weight, and precocity samples were repeated in March at Curl Lake AP prior to release (Table 20).

Table 20. Sample size (N), mean length (mm), coefficient of variation (CV), condition factor (K), mean weight (g), and precocity of 2014 BY juveniles sampled at TFH, and Curl Lake AP.

	Sample Location	\mathbf{N}	Mean Length (mm)	CV	K	Mean Wt. (g)	\% Precocity
$1 / 20 / 16$	TFH	265	125.9	12.8	1.28	26.7	0.12
$3 / 30 / 16$	Curl Lake	271	146.2	13.3	1.23	40.2	0.00

A new fence was constructed around Curl Lake AP during the spring of 2015 after reports from hatchery staff of increased numbers of predators (primarily river otters) consuming hatchery fish. A PIT tag antenna array was installed at the outlet of Curl Lake AP in 2014 in order to obtain a more accurate release number due to the high predation and was used again for release estimates during the spring of 2016. Problems with interference were noted at the array and the data was not useable, so we used estimates of the numbers of fish released provided by hatchery staff instead. Volitional release began 1 April and continued until 15 April when the remaining fish were forced out. Estimated numbers and size of fish released are provided in Table 21. Historical hatchery release information is provided in Appendix G.

Table 21. Preliminary spring Chinook salmon releases into the Tucannon River, 2016 release year.

Release	CWT	Total	Number	VIE	Size	
Date	Code	Released	CWT	Mark	Total (kg)	Mean (g)
$4 / 01-4 / 15$	$63 / 68 / 84$	221,099	216,295	None	8,883	40

Smolt Trapping

Evaluation staff operated a 1.5 m rotary screw trap at rkm 3 on the Tucannon River from 13 October 2014 through 26 June 2015 to estimate numbers of migrating juvenile natural and hatchery spring Chinook. Numbers of each fish species captured by month during the 2015 outmigration can be found in Appendix H. The main outmigration of natural origin spring Chinook occurred during the spring, but some outmigration also occurred in the fall and winter (Figure 6).

Capture Period

Figure 6. Emigration timing of natural spring Chinook salmon captured during smolt trap operations (rkm 3) on the Tucannon River for the 2014-15 migration year.

Natural spring Chinook emigrating from the Tucannon River (BY 2013) averaged 103 mm (Figure 7). This is in comparison to a mean length of 143 mm for hatchery-origin fish (BY 2013) released from Curl Lake Acclimation Pond (Gallinat and Ross 2015).

Figure 7. Length frequency distribution of sampled natural spring Chinook salmon captured in the Tucannon River smolt trap, 2014/2015 season.

Each week we attempted to determine trap efficiency by clipping a portion of the caudal fin on a representative subsample of captured migrants and releasing them approximately one kilometer upstream. The percent of marked fish recaptured was used as an estimate of weekly trapping efficiency. In previous reports we attempted to relate trap efficiency to abiotic factors such as stream flow or staff gauge level based on similar juvenile outmigration studies (Groot and Margolis 1991; Seiler et al. 1999; Cheng and Gallinat 2004). We found no significant relationships.

To estimate potential juvenile migrants passing when the trap was not operated for short intervals (≤ 5 days), such as periods when freshets washed out large amounts of debris from the river, we calculated the mean number of fish trapped for three days before and three days after nontrapping periods. The mean number of fish trapped daily was then divided by the estimated trap efficiency to calculate fish passage. The estimated number of fish passing each day was then applied to each day the trap was not operated.

We estimated outmigration based on the approach of Steinhorst et al. (2004). This involved using a Bailey-modified Lincoln-Peterson estimation with 95\% bootstrap confidence intervals by running the Gauss Run-Time computer program (version 7.0). Bootstrap iterations numbered 1,000 . The program allows for the division of the out-migration trapping season into strata with similar capture efficiencies as long as at least seven marked recaptures occurred. Strata with less
than seven recaptures were grouped with either the preceding or following strata, depending upon similarity in trapping/flow conditions. Where river conditions were similar, we used our best judgment to group the strata.

A number of assumptions are required to attain unbiased estimates of smolt production. How well the assumptions are met will determine the accuracy and precision of the estimates. Some of these assumptions are:

- Survival from release to the trap was 100%.
- All marked fish are identified and correctly enumerated.
- Fish do not lose their marks.
- All fish in the tag release group emigrate (i.e., do not residualize in the area of release).
- Marked fish are caught at the same rate as unmarked fish.

Accurate outmigration estimates are critical for describing survival trends and to measure population response to management actions such as hatchery supplementation and habitat restoration. It has been strongly suggested that researchers test the assumptions of population estimators being used (Peterson et al. 2004; Rosenberger and Dunham 2005). Other WDFW researchers have identified bias in smolt trap efficiency estimates that were conducted similarly to Tucannon River trap efficiency tests. While the evidence of estimator bias and error seem consistent in the literature, our methods differ from those, and must be tested to estimate the level of error, and confirm compliance of the methods with underlying assumptions. If bias in our methods has been consistent over the term of the data, data could be adjusted as appropriate once bias is measured.

In past years, we attempted to measure bias in our efficiency estimates through the use of PIT tags and the PIT tag array that has been deployed in the lower Tucannon River below the smolt trap. Representative groups of fish were fin clipped and PIT tagged to determine smolt trap efficiency based on either recaptures in the smolt trap or detections by the PIT tag array in the Tucannon River. However, the PIT tag array proved unreliable in its detection of juvenile salmonids. If PIT tag technology in the future allows for greater detections of juvenile salmonids, then we will attempt to measure trapping bias again. We estimate that 3,831 (S.E. 726.6; 95\% C.I. 2,722-5,667) migrant natural-origin spring Chinook (2013 BY) passed the smolt trap during 2014-2015.

Juvenile Migration Studies

In 2015, we used PIT tags to study the emigration timing and relative success of our hatchery supplementation and natural origin smolts. A total of 14,962 hatchery supplementation fish were PIT tagged (7,483 of the TFH reared fish and 7,479 of the LFH reared fish) during January before transferring them to Curl Lake AP for acclimation and volitional release (Table 20). We also tagged natural origin smolts at the smolt trap throughout the outmigration year (Oct.-June) but only report January through June detections here. Cumulative PIT tag detections at hydroelectric projects downstream of the Tucannon River were 21% for the TFH reared fish, 20\% for the LFH reared fish, and 31\% for the natural origin smolts (Table 22).

Table 22. Cumulative detection (one unique detection per tag code) and mean travel time in days (TD) of PIT tagged conventional hatchery supplementation (TFH and LFH reared) smolts released ${ }^{\text {a }}$ from Curl Lake AP (rkm 65.6) on the Tucannon River at downstream Snake and Columbia River dams and natural origin smolts tagged and released (January through June) at the Tucannon River smolt trap (rkm 3) during 2015.

Origin	Release Data			Mean Length	Recapture Data												
	Mean N Length		S.D.		LMJ		ICH		MCJ		JDJ		BONN		Total ${ }^{\text {b }}$		
			N		TD	N	\%										
TFH	7,483	133.6		23.3	134.1	298	23.5	40	28.8	651	26.9	112	30.9	226	32.5	1,559	20.8
LFH	7,479	137.9	19.4	136.7	290	21.6	42	25.4	627	26.0	88	27.6	186	30.6	1,479	19.8	
Natural	397	102.8	10.4	105.1	34	10.0	6	7.7	49	18.9	8	14.3	7	20.0	121	30.5	

${ }^{\text {a }}$ Fish were volitionally released from 4/11/14-4/23/14.
${ }^{\mathrm{b}}$ Includes fish detected at the lower Tucannon River PIT tag array (LTR) and trawl detections below Bonneville Dam (TWX). Note: Mean travel times listed are from the total number of fish detected at each dam, not just unique recoveries for a tag code. Abbreviations are as follows: LMJ-Lower Monumental Dam, ICH- Ice Harbor Dam, MCJ-McNary Dam, JDJ-John Day Dam, BONN-Bonneville Dam, TD- Mean Travel Days.

Survival probabilities were estimated by the Cormack-Jolly-Seber methodology using the Survival Under Proportional Hazards (SURPH) 2.2 computer model. The data files were created using the PitPro version 4.19 .8 computer program to translate raw PIT Tag Information System (PTAGIS) data of the Pacific States Marine Fisheries Commission into usable capture histories for the SURPH program. Estimated survival probabilities from Curl Lake to Lower Monumental Dam were 0.49 (S.E. $=0.06$) for LFH reared fish and 0.55 (S.E. $=0.06$) for TFH reared fish.

Survival Rates

Point estimates of population sizes have been calculated for various life stages (Tables 23 and 24) of natural and hatchery-origin spring Chinook from spawning ground and juvenile midsummer population surveys, smolt trapping, and fecundity estimates. Survivals between life stages have been calculated for both natural and hatchery salmon to assist in the evaluation of the hatchery program. These survival estimates provide insight as to where efforts should be directed to improve not only the survival of fish produced within the hatchery, but fish in the river as well.

As expected, juvenile (egg-parr-smolt) survival rates for hatchery fish are considerably higher than for naturally reared salmon (Table 25) because they have been protected in the hatchery. However, SARs to the Tucannon River of natural salmon were seven times higher (based on geometric means) than for hatchery-reared salmon (Tables 26 and 27). With the exception of the 2006 brood year, hatchery SARs (mean 0.25%; geometric mean 0.16%) documented from the 1985-2009 broods was well below the assumed SAR rate of 0.87%. Hatchery SARs for Tucannon River salmon need to substantially improve to meet the mitigation goal of 1,152 hatchery adult salmon.

Table 23. Estimates of natural in-river produced Tucannon spring Chinook salmon (both hatchery and natural origin parents) abundance by life stage for 1985-2015 broods.

Brood Year	Females in River		Mean Fecundity ${ }^{\text {a }}$		Number of Eggs	Number of Parr ${ }^{\text {b }}$	Number of Smolts	Progeny (returning adults) ${ }^{\text {c }}$
	Natural	Hatchery	Natural	Hatchery				
$1985{ }^{\text {d }}$	316	---	3,883	---	1,227,028	90,200	42,000	392
1986	200	---	3,916	---	783,200	102,600	58,200	467
1987	185	---	4,096	---	757,760	79,100	44,000	228
1988	117	---	3,882	---	454,194	69,100	37,500	502
1989	103	3	3,883	2,606	407,767	58,600	30,000	153
1990	128	52	3,993	2,697	651,348	86,259	49,500	94
1991	51	40	3,741	2,517	291,471	54,800	30,000	7
1992	119	81	3,854	3,295	725,521	103,292	50,800	161
1993	112	80	3,701	3,237	673,472	86,755	49,560	177
1994	39	5	4,187	3,314	179,863	12,720	7,000	12
1995	5	0	5,224	0	26,120	0	75	6
1996	53	16	3,516	2,843	231,836	2,845	1,612	69
1997	39	34	3,609	3,315	253,461	32,913	21,057	791
1998	19	7	4,023	3,035	97,682	8,453	5,508	388
1999	1	40	3,965	3,142	129,645	15,944	8,721	141
2000	26	66	3,969	3,345	323,964	44,618	29,442	448
2001	219	78	3,612	3,252	1,044,684	63,412	42,416	257
2002	104	195	3,981	3,368	1,070,784	72,197	64,036	212
2003	67	51	3,789	3,812	448,275	40,900	27,724	173
2004	117	43	3,444	2,601	514,791	30,809	21,057	399
2005	82	25	3,773	2,903	381,961	21,162	17,579	739
2006	73	36	2,887	2,654	306,295	---	30,228	1,720
2007	50	31	3,847	2,869	281,289	---	8,529	610
2008	95	104	3,732	3,020	668,620	---	14,778	884
2009	178	273	3,639	3,267	1,539,633	---	45,538	619
2010	278	203	3,579	3,195	1,643,547	---	35,080	938
2011	175	122	4,230	3,301	1,142,972	---	23,376	660
2012	115	54	3,151	2,563	500,767	---	12,886	65
2013	44	20	3,798	3,185	230,812	---	3,831	
2014	105	19	3,699	3,290	450,905	---		
2015	64	127	3,839	3,468	686,132	---		

${ }^{\text {a }} 1985$ and 1989 mean fecundity of natural females is the average of 1986-88 and 1990-93 brood years.
${ }^{\mathrm{b}}$ Number of parr estimated from electrofishing (1985-1989), Line transect snorkel surveys (1990-1992), and Total Count snorkel surveys (1993-2005).
${ }^{\text {c }}$ Numbers do not include down river harvest or other out-of-basin recoveries.
${ }^{\text {d }}$ The 1985 redd counts were revised on the SASI database to account for all redds during the spawning season
(WDFW 2015).

Table 24. Estimates of Tucannon spring Chinook salmon abundance (spawned and reared in the hatchery) by life stage for 1985-2015 broods.

Brood Year	Females Spawned		Mean Fecundity ${ }^{\text {a }}$		Number of Eggs	Number of Parr	Number of Smolts	Progeny (returning Adults) ${ }^{\text {b }}$
	Natural	Hatchery	Natural	Hatchery				
1985	4	---	3,883	---	14,843	13,401	12,922	45
1986	57	---	3,916	---	187,958	177,277	152,725	319
1987	48	---	4,096	---	196,573	164,630	152,165	178
1988	49	---	3,882	---	182,438	150,677	145,146	385
1989	28	9	3,883	2,606	133,521	103,420	99,057	209
1990	21	23	3,993	2,697	126,334	89,519	85,737	28
1991	17	11	3,741	2,517	91,275	77,232	74,064	25
1992	28	18	3,854	3,295	156,359	151,727	87,752 ${ }^{\text {c }}$	76
1993	21	28	3,701	3,237	168,366	145,303	138,848	138
1994	22	21	4,187	3,314	161,707	132,870	130,069	32
1995	6	15	5,224	0	85,772	63,935	62,144	177
1996	18	19	3,516	2,843	117,287	80,325	76,219	265
1997	17	25	3,609	3,315	144,237	29,650	24,186	176
1998	30	14	4,023	3,035	161,019	136,027	127,939	793
1999	1	36	3,965	3,142	113,544	106,880	97,600	33
2000	3	35	3,969	3,345	128,980	123,313	102,099	157
2001	29	27	3,612	3,252	184,127	174,934	146,922	127
2002	22	25	3,981	3,368	169,364	151,531	123,586	121
2003	17	20	3,789	3,812	140,658	126,400	71,154	71
2004	28	18	3,444	2,601	140,459	128,877	67,542	120
2005	25	24	3,773	2,903	161,345	151,466	149,466	690
2006	18	27	2,887	2,654	123,629	112,350	106,530	1,122
2007	27	9	3,847	2,869	124,543	117,182	114,681	261
2008	17	43	3,732	3,020	193,324	183,925	172,897	643
2009	42	54	3,639	3,267	323,341	292,291	231,437 ${ }^{\text {d }}$	300
2010	39	44	3,579	3,195	279,969	237,861	201,585	194
2011	45	41	4,230	3,301	325,701	305,215	259,964	695
2012	48	47	3,151	2,563	269,514	246,033	203,510	184
2013	48	30	3,798	3,185	275,188	263,630	207,859	
2014	39	27	3,699	3,290	231,026	226,300	221,099	
2015	55	20	3,839	3,468	280,519	266,134		

${ }^{\text {a }} 1985$ and 1989 mean fecundity of natural females is the average of 1986-88 and 1990-93 brood years; 1999 mean fecundity of natural fish is based on the mean of 1986-1998 brood years.
b Numbers do not include down river harvest or other out-of-basin recoveries.
c Number of smolts is less than actual release number. 57,316 parr were released in October 1993, with an estimated 7% survival. Total number of hatchery fish released from the 1992 brood year was 140,725 . We therefore use the listed number of 87,752 as the number of smolts released.
d Parr determined to be in excess of program goals were released at Russell Springs and are not included in number of parr and smolts.

Table 25. Percent survival by brood year for juvenile salmon and the multiplicative advantage of hatcheryreared salmon over naturally-reared salmon in the Tucannon River.

Brood Year	Natural			Hatchery			Hatchery Advantage		
	Egg to Parr	Parr to Smolt	Egg to Smolt	Egg to Parr	Parr to Smolt	Egg to Smolt	Egg to Parr	Parr to Smolt	Egg to Smolt
1985	7.4	46.6	3.4	90.3	96.4	87.1	12.3	2.1	25.4
1986	13.1	56.7	7.4	94.3	86.2	81.3	7.2	1.5	10.9
1987	10.4	55.6	5.8	83.8	92.4	77.4	8.0	1.7	13.3
1988	15.2	54.3	8.3	82.6	96.3	79.6	5.4	1.8	9.6
1989	14.4	51.2	7.4	77.5	95.8	74.2	5.4	1.9	10.1
1990	13.2	57.4	7.6	70.9	95.8	67.9	5.4	1.7	8.9
1991	18.8	54.7	10.3	84.6	95.9	81.1	4.5	1.8	7.9
1992	14.2	49.2	7.0	97.0	57.8	56.1	6.8	1.2	8.0
1993	12.9	57.1	7.4	86.3	95.6	82.5	6.7	1.7	11.2
1994	7.1	55.0	3.9	82.2	97.9	80.4	11.6	1.8	20.7
1995	0.0	0.0	0.3	74.5	97.2	72.5	---	---	---
1996	1.2	56.7	0.7	68.5	94.9	65.0	55.8	1.7	---
1997	13.0	64.0	8.3	20.6	81.6	16.8	1.6	1.3	2.0
1998	8.7	65.2	5.6	84.5	94.1	79.5	9.8	1.4	14.1
1999	12.3	54.7	6.7	94.1	91.3	86.0	7.7	1.7	12.8
2000	13.8	66.0	9.1	95.6	82.8	79.2	6.9	1.3	8.7
2001	6.1	66.9	4.1	95.0	84.0	79.8	15.7	1.3	19.7
2002	6.7	88.7	6.0	89.5	81.6	73.0	13.3	0.9	12.2
2003	9.1	67.8	6.2	89.9	56.3	50.6	9.8	0.8	8.2
2004	6.0	68.3	4.1	91.8	52.4	48.1	15.3	0.8	11.8
2005	5.5	83.1	4.6	93.9	98.7	92.6	16.9	1.2	20.1
2006	---	---	9.9	90.9	94.8	86.2	---	---	8.7
2007	---	---	3.0	94.1	97.9	92.1	---	---	30.4
2008	---	---	2.2	95.1	94.0	89.4	---	---	40.5
2009	---	---	3.0	90.4	79.2	71.6	---	---	24.2
2010	---	---	2.1	85.0	84.7	72.0	---	---	33.7
2011	---	---	2.0	93.7	85.2	79.8	---	---	39.0
2012	---	---	2.6	91.3	82.7	75.5	--	---	29.3
2013	---	---	1.7	95.8	78.8	75.5			45.5
2014	---	---		98.0	97.7	95.7			
$2015{ }^{\text {a }}$				94.9					
Mean	10.0	58.1	5.3	86.3	87.3	74.9	11.3	1.5	17.0
SD	4.8	16.8	2.8	14.4	12.6	15.7	11.2	0.4	10.5

Table 26. Adult returns and SARs of natural salmon to the Tucannon River for brood years 1985-2012. (2011 and 2012 are incomplete brood years included for comparison.)

Brood Year	Estimated Number of Smolts	Number of Adult Returns, observed (obs) and expanded (exp) ${ }^{\text {a }}$						SAR (\%)	
		Age 3		Age 4		Age 5		With	No
		Obs	Exp	Obs	Exp	Obs	Exp	Jacks	Jacks
1985	42,000	8	19	110	255	36	118	0.93	0.89
$1986{ }^{\text {b }}$	58,200	1	2	115	375	28	90	0.80	0.80
1987	44,000	0	0	52	167	29	61	0.52	0.52
1988	37,500	1	3	136	318	74	181	1.34	1.33
1989	30,000	5	12	47	115	23	26	0.51	0.47
1990	49,500	3	8	63	72	12	14	0.19	0.17
1991	30,000	0	0	4	5	1	2	0.02	0.02
1992	50,800	2	2	84	138	16	21	0.32	0.31
1993	49,560	1	2	62	100	58	75	0.36	0.35
1994	7,000	0	0	8	10	1	2	0.17	0.17
1995	75	0	0	1	1	2	5	8.00	8.00
1996	1,612	0	0	27	63	2	6	4.28	4.28
1997	21,057	6	14	234	695	29	82	3.76	3.69
1998	5,508	3	9	91	259	43	120	7.04	6.88
1999	8,721	3	9	44	124	3	8	1.62	1.51
2000	29,442	1	3	148	392	16	53	1.52	1.51
2001	42,416	0	0	73	246	5	11	0.61	0.61
2002	64,036	1	3	68	134	36	75	0.33	0.33
2003	27,724	4	7	55	115	21	51	0.62	0.60
2004	21,057	4	8	147	352	19	39	1.89	1.86
2005	17,579	23	131	260	595	2	13	4.20	3.46
2006	30,228	32	116	298	1,389	73	215	5.69	5.31
2007	8,529	4	41	133	456	22	113	7.15	6.67
2008	14,778	10	85	150	693	23	106	5.98	5.41
2009	45,538	1	7	94	554	10	58	1.36	1.34
2010	35,080	3	91	136	799	17	48	2.67	2.41
2011	23,376	3	41	145	619	---	---	2.82	2.65
2012	12,886	4	65	---	---	---	---	0.50	---
Mean								$2.38{ }^{\text {d }}$	$2.27{ }^{\text {d }}$
Geometric Mean								$1.16{ }^{\text {d }}$	$1.11{ }^{\text {d }}$

a Expanded numbers are calculated from the proportion of each known age salmon recovered in the river and from broodstock collections in relation to the total estimated return to the Tucannon River. Expansions do not include down river harvest or Tucannon River fish straying to other systems.
b One known (expanded to two) Age 6 salmon was recovered.
c Numbers of smolts obtained from estimates in the annual reports.
d The 2011 and 2012 SARs are not included in the mean.

Table 27. Adult returns and SARs of hatchery salmon to the Tucannon River for brood years 1985-2012. (2011 and 2012 are incomplete brood years included for comparison.)

Brood Year	Estimated Number of Smolts	Number of Adult Returns, observed (obs) and expanded (exp) ${ }^{\text {a }}$						SAR (\%)	
		Age 3		Age 4		Age 5		With	No
		Obs	Exp	Obs	Exp	Obs	Exp	Jacks	Jacks
1985	12,922	9	19	25	26	0	0	0.35	0.20
1986	152,725	79	83	99	220	8	18	0.21	0.15
1987	152,165	9	19	70	145	8	14	0.12	0.10
1988	145,146	46	99	140	244	26	42	0.27	0.20
1989	99,057	7	13	100	179	14	17	0.21	0.20
1990	85,737	3	6	16	20	2	2	0.03	0.03
1991	74,064	4	5	20	20	0	0	0.03	0.03
1992	87,752	11	11	50	63	2	2	0.09	0.07
1993	138,848	11	15	93	107	15	16	0.10	0.09
1994	130,069	2	4	21	23	4	5	0.02	0.02
1995	62,144	13	16	117	157	2	4	0.28	0.26
1996	76,219	44	59	100	192	5	14	0.35	0.27
1997	24,186	7	13	59	163	0	0	0.73	0.67
1998	127,939	36	97	174	546	39	150	0.62	0.54
1999	97,600	3	11	5	19	1	3	0.03	0.02
2000	102,099	7	26	47	131	0	0	0.15	0.13
2001	146,922	7	19	51	107	1	1	0.09	0.07
2002	123,586	3	6	60	99	6	16	0.10	0.09
2003	71,154	1	2	23	65	2	4	0.10	0.10
2004	67,542	7	18	59	98	2	4	0.18	0.15
2005	149,466	50	291	180	399	0	0	0.46	0.27
2006	106,530	60	402	180	679	19	41	1.05	0.68
2007	114,681	7	74	76	171	5	16	0.23	0.16
2008	172,897	27	269	104	369	6	5	0.37	0.22
2009	231,437	1	8	62	291	1	1	0.13	0.13
2010	201,585	2	66	55	113	2	15	0.10	0.06
2011	259,964	8	62	113	633	---	---	0.27	0.24
2012	203,510	24	184	---	---	---	---	0.09	---
Mean								$0.25{ }^{\text {b }}$	$0.19{ }^{\text {b }}$
Geometric Mean								$0.16{ }^{\text {b }}$	$0.13{ }^{\text {b }}$

${ }^{\text {a }}$ Expanded numbers are calculated from the proportion of each known age salmon recovered in the river and from broodstock collections in relation to the total estimated return to the Tucannon River. Expansions do not include
down river harvest or Tucannon River fish straying to other systems.
b The 2011 and 2012 SARs are not included in the mean.

As previously stated, overall survival of hatchery salmon to return as adults was higher than for naturally reared fish because of the early-life survival advantage (Table 25). With the exception of eleven brood years, naturally produced fish have been below the replacement level (Figure 8; Table 28). Based on adult returns from the 1985-2011 broods, naturally reared salmon produced only 0.76 adults for every spawner, while hatchery reared fish produced 2.00 adults (based on geometric means).

Figure 8. Return per spawner (with replacement line) for the 1985-2011 brood years (2011 incomplete brood year).

Table 28. Progeny-to-parent survival estimates of Tucannon River spring Chinook salmon from 1985 through 2011 brood years (2011 brood year incomplete).

Brood Year	Natural Salmon			Hatchery Salmon			Hatchery to Natural Advantage
	Estimated Spawners	Number of Returns	Return/ Spawner	Number Spawned	Number of Returns	Return/ Spawner	
1985	695	392	0.56	9	45	5.00	8.9
1986	440	467	1.06	91	319	3.51	3.3
1987	407	228	0.56	83	178	2.14	3.8
1988	257	502	1.95	87	385	4.43	2.3
1989	276	153	0.55	122	209	1.71	3.1
1990	572	94	0.16	78	28	0.36	2.2
1991	291	7	0.02	72	25	0.35	14.4
1992	476	161	0.34	83	76	0.92	2.7
1993	397	177	0.45	91	138	1.52	3.4
1994	97	12	0.12	69	32	0.46	3.7
1995	27	6	0.22	39	177	4.54	20.4
1996	152	69	0.45	74	265	3.58	7.9
1997	105	791	7.53	89	176	1.98	0.3
1998	60	388	6.47	85	793	9.33	1.4
1999	160	141	0.88	122	33	0.27	0.3
2000	201	448	2.23	73	157	2.15	1.0
2001	766	257	0.34	104	127	1.22	3.6
2002	568	212	0.37	93	121	1.30	3.5
2003	329	173	0.53	75	71	0.95	1.8
2004	346	399	1.15	88	120	1.36	1.2
2005	264	739	2.80	95	690	7.26	2.6
2006	202	1,720	8.51	88	1,122	12.75	1.5
2007	211	610	2.89	82	261	3.18	1.1
2008	796	884	1.11	114	643	5.64	5.1
2009	1191	619	0.52	173	300	1.73	3.3
2010	938	938	1.00	161	194	1.20	1.2
2011	849	660	0.78	166	695	4.19	5.4
Mean			1.61			3.08	4.1
Geometric							
Mean			0.76			1.99	2.6

Beginning with the 2006 brood year, the annual smolt goal was increased from 132,000 to 225,000 to help offset for the higher mortality of hatchery-origin fish after they leave the hatchery. This should increase adult salmon returns back to the Tucannon River. However, based on current hatchery SARs the increase in production would still not produce enough adult returns to reach the LSRCP mitigation goal. Hatchery production changes that result in increased survival/return numbers may result in a Proportionate Natural Influence (PNI) of less
than 0.5 . This level is generally not considered acceptable for supplementation programs. Historically the PNI for the Tucannon Spring Chinook Program has generally been above 0.5 (Appendix I).

The long-term mitigation goal is to provide a total annual return of between 2,400-3,400 hatchery and natural origin fish back to the Tucannon River (SRSRB 2006) that should include at least 750 natural origin fish over a 10-year geometric mean (population viability threshold) (ICTRT 2008). Natural origin returns have been increasing in recent years (Figure 9). However, we are still below the 10-year moving geometric mean of 750 natural origin fish.

Figure 9. Tucannon River spring Chinook natural origin returns with the moving ten year geometric mean (black line) for the 1985-2015 run years.

Fishery Contribution and Out-of-Basin Straying

An original goal of the LSRCP supplementation program was to enhance returns of salmon to the Tucannon River by providing 1,152 adult hatchery origin fish (the number estimated to have been lost to the project area due to the construction and operation of the Lower Snake River hydropower system) to the river from hatchery-reared smolt releases. Such an increase would allow for limited harvest and increased spawning. However, hatchery adult returns have always been below the mitigation goal (Figure 10). Based on CWT recoveries reported to the Regional Mark Information System (RMIS) database (Appendix K), sport, commercial, and treaty ceremonial harvest combined accounted for an average of less than 6% of the adult hatchery fish recovered for the 1985-1996 brood years. Increased fishery impacts occurred for the 1997 through 1999 broods when the states implemented mark-selective fisheries in the lower Columbia River (fishery harvest comprised an average of 19% for recoveries). We subsequently stopped adipose fin clipping of hatchery production (Gallinat et al. 2001) to lessen non-tribal fishery impacts. Returning conventional supplementation adults are now just tagged with CWTs, but do not have external marks to identify them as hatchery origin fish. This has resulted in lower sport fishery impacts. Based on CWT recoveries for the 2000-2011 brood years, harvest (primarily commercial) has accounted for only 7\% of the hatchery adult CWT recoveries (Appendix J).

Out-of-basin stray rates of Tucannon River spring Chinook have generally been low (Appendix J), with an average of 1.3% of the adult hatchery fish straying to other river systems/hatcheries for brood years 1985-2011 (range 0-20\%).

Figure 10. Total escapement for Tucannon River spring Chinook salmon for the 1985-2015 run years.

Adjusted Hatchery SAS

Using CWT recoveries from the RMIS database, we adjusted Tucannon River spring Chinook hatchery smolt-to-adult survival (SAS) to include all known recoveries both from within and outside the Tucannon River. Increased fishing mortality resulted in higher adjusted SAS for the 1997, 1998, and 2006 brood years. With minor exceptions (1997 and 2006 brood years), even after adjustment, hatchery SAS were still well below the LSRCP survival goal of 0.87% (Table 29).

Table 29. Hatchery SAS adjusted for recoveries from outside the Tucannon River subbasin as reported in the RMIS database, 1985-2010 brood years. (Data downloaded from RMIS database on 2/19/16).

Brood Year	Estimated Number of Smolts	Expanded Return to Tucannon	Expanded Other Returns ${ }^{\mathbf{a}}$	Grand Total of CWT Hatchery Origin Recoveries	Original Hatchery SAR (\%)	Adjusted Hatchery SAS (\%)
1985	12,922	45	1	46	0.35	0.36
1986	152,725	319	15	334	0.21	0.22
1987	152,165	178	2	180	0.12	0.12
1988	145,146	385	26	411	0.27	0.28
1989	99,057	209	12	221	0.21	0.22
1990	85,737	28	0	28	0.03	0.03
1991	74,064	25	4	29	0.03	0.04
1992	87,752	76	17	93	0.09	0.11
1993	138,848	138	11	149	0.10	0.11
1994	130,069	32	0	32	0.02	0.02
1995	62,144	177	2	179	0.28	0.29
1996	76,219	265	5	270	0.35	0.35
1997	24,186	176	41	217	0.73	0.90
1998	127,939	793	216	1,012	0.62	0.79
1999	97,600	33	3	36	0.03	0.04
2000	102,099	157	1	158	0.15	0.15
2001	146,922	127	5	132	0.09	0.09
2002	123,586	121	0	121	0.10	0.10
2003	71,154	71	0	71	0.10	0.10
2004	67,542	120	1	121	0.18	0.18
2005	149,466	690	2	692	0.46	0.46
2006	106,530	1,122	36	1,159	1.05	1.09
2007	114,681	261	5	266	0.23	0.23
2008	172,897	643	4	647	0.37	0.37
2009	231,437	300	8	308	0.13	0.13
2010	201,585	194	1	195	0.10	0.10
Mean					$\mathbf{0 . 2 5}$	$\mathbf{0 . 2 6}$
Geometric $\mathbf{M e a n}$			0.16	$\mathbf{0 . 1 7}$		

${ }^{\text {a }}$ Includes expanded RMIS CWT recoveries from sources outside the Tucannon River subbasin (i.e., sport and commercial fisheries, Tucannon strays in other river systems, etc.).

Conclusions and Recommendations

Washington's LSRCP hatchery spring Chinook salmon program has failed to return adequate numbers of adults to meet the mitigation goal. This has occurred because SARs of hatchery origin fish have been consistently lower than what was originally assumed under the LSRCP program development, even though hatchery returns (recruits/spawner) have generally been at 2-3 times the replacement level. However, because of the advantage in survival during early life history stages for fish in the hatchery, the progeny-to-parent ratio for hatchery produced fish has generally been above replacement and therefore has likely sustained the population during years when the population was at critically low levels. We have seen a significant rebound of natural origin fish in recent years and we came close to reaching the within river hatchery (LSRCP) goal of 1,152 fish in 2009 and 2010. System survivals (in-river, migration corridor, and ocean) must increase in the near future for the hatchery program to succeed, the natural run to persist over the short-term, and the natural population to increase to a level where it can be sustainable over the long-term.

Until that time, the evaluation program will continue to document and study life history survivals, straying, carrying capacity, genotypic and phenotypic traits, and examine procedures within the hatchery that can be changed to improve the hatchery program and the natural population. Based on our previous studies and current data we recommend the following:

1. We continue to see annual differences in phenotypic characteristics of returning salmon (i.e., hatchery fish are generally younger and less fecund than natural origin fish), yet other traits such as run and spawn time are little changed over the program's history. Further, genetic analysis to date has detected little change in the natural population that may have resulted from hatchery actions.

Recommendation: Continue to collect as many carcasses as possible for the most accurate age composition data. Collect biological data (length, run timing, spawn timing, fecundity estimates, DNA samples, smolt trapping, and life stage survival) to document the effects (positive or negative) that the hatchery program may have on the natural population.
2. Based on annual redd densities and historical spring Chinook radio tag data, the Tucannon Fish Hatchery weir/trap has been an impediment to upstream passage of spring Chinook to the better spawning and rearing habitat upstream of the trap. Numerous options to improve attraction into the ladder/trap have been discussed with some recently implemented. In the fall of 2016, WDFW and LSRCP will upgrade the entire Tucannon Fish Hatchery PIT tag array with permanent antennas above and below the weir/trap, and within the fish ladder for a passage and delay evaluation of ESA-listed bull trout. This may allow for additional passage evaluation of spring Chinook salmon.

Recommendation: Once the new array has been installed, use adult spring Chinook PIT tag returns to estimate passage delays and fallback rates (if any) at the weir/adult trap. Use data accordingly to modify the ladder/trap to improve passage, or to adjust escapement estimates.
3. Subbasin and recovery planning for ESA listed species in the Tucannon River have identified factors limiting the spring Chinook population and strategies to recover the population.

Recommendation: Assist population conservation efforts by updating recent carrying capacity/density and straying effects, and productivity estimates of the Tucannon River so that hatchery stocking is appropriate, and hatchery and natural performance is measured against future basin capacity after habitat improvements.
4. We have documented that hatchery juvenile (egg-parr-smolt) survival rates are considerably higher than naturally reared salmon, and hatchery smolt-to-adult return rates are much lower. We need to identify and address the factors that limit hatchery SARs in order to meet mitigation goals and for natural production to meet recovery goals. Beginning with the 2006 brood year, the annual hatchery smolt goal was increased from 132,000 to 225,000 to help offset the higher mortality of hatchery-origin fish after they leave the hatchery. The size at release of hatchery smolts was increased in 2011. Both of these changes are expected to increase adult salmon returns back to the river. However, based on current mean hatchery SARs, these actions alone would still not produce enough adult returns to reach the LSRCP mitigation goal.

Recommendation: Continue to evaluate survival rates from other reference watersheds to see if the goal of 0.87% is realistic under existing conditions. PIT tag natural origin fish in the river to ascertain where or at what life stage mortality is occurring. Continue to monitor high in-river pre-spawn mortality that has occurred in recent years. Utilize fish carcasses from hatchery operations for stream nutrient enrichment. Encourage fish and wildlife enforcement patrols and additional public education efforts during periods when spring Chinook adults are most vulnerable (pre-spawn and spawning).

Literature Cited

Blankenship, S., and G. Mendel. 2010. Genetic characterization of adult Chinook trapped in lower Asotin Creek. WDFW report. 12 pp.

Bugert, R., P. LaRiviere, D. Marbach, S. Martin, L. Ross, and D. Geist. 1990. Lower Snake River Compensation Plan Salmon Hatchery Evaluation Program 1989 Annual Report to U.S. Fish and Wildlife Service, AFF 1/LSR-90-08, Cooperative Agreement 14-16-0001-89525. Washington Department of Fisheries, Olympia, Washington.

Bugert, R., C. Busack, G. Mendel, L. Ross, K. Petersen, D. Marbach, and J. Dedloff. 1991. Lower Snake River Compensation Plan Tucannon River Spring Chinook Salmon Hatchery Evaluation Program 1990 Annual Report to U.S. Fish and Wildlife Service, AFF 1/LSR-9114, Cooperative Agreement 14-16-0001-90524. Washington Department of Fisheries, Olympia, Washington.

Bumgarner, J., L. Ross, and M. Varney. 2000. Lower Snake River Compensation Plan Tucannon River Spring Chinook Salmon Hatchery Evaluation Program 1998 and 1999 Annual Reports to U.S. Fish and Wildlife Service, Cooperative Agreements 1448-14110-98J057 and CA-14110-9-J070. Washington Department of Fish and Wildlife, Olympia, Washington. Report \# FPA00-17.

Busack, C., and C. M. Knudsen. 2007. Using factorial mating designs to increase the effective number of breeders in fish hatcheries. Aquaculture 273: 24-32.

Cheng, Y. W., and M. P. Gallinat. 2004. Statistical analysis of the relationship among environmental variables, inter-annual variability and smolt trap efficiency of salmonids in the Tucannon River. Fisheries Research 70: 229-238.

Gallinat, M. P. and W-Y Chang. 2013. Phenotypic comparisons among natural-origin, hatchery-origin, and captive-reared female spring Chinook salmon from the Tucannon River, Washington. North American Journal of Aquaculture 75 (4): 572-581.

Gallinat, M. P., J. D. Bumgarner, L. Ross, and M. Varney. 2001. Tucannon River Spring Chinook Salmon Hatchery Evaluation Program 2000 Annual Report to U.S. Fish and Wildlife Service, Cooperative Agreement 1411-09-J070. Washington Department of Fish and Wildlife, Olympia, Washington. Report \# FPA01-05.

Gallinat, M. P., and L. A. Ross. 2014. Tucanon River Spring Chinook Salmon Hatchery Evaluation Program 2013 Annual Report to U.S. Fish and Wildlife Service, Cooperative Agreement F13AC00096. Washington Department of Fish and Wildlife, Olympia, Washington. Report \#FPA14-05. 104 p.

Gallinat, M. P., and L. A. Ross. 2015. Tucanon River Spring Chinook Salmon Hatchery Evaluation Program 2014 Annual Report to U.S. Fish and Wildlife Service, Cooperative Agreement F14AC00010. Washington Department of Fish and Wildlife, Olympia, Washington. Report \#FPA15-04. 108 p.

Groot, C., and L. Margolis. 1991. Pacific salmon life histories. UBC Press. Vancouver, B.C. 564 p.

ICTRT (Interior Columbia Technical Recovery Team). 2008. Current status assessments. U.S. Dept. Commer., NOAA, National Marine Fisheries Service, Northwest Region, Portland, Ore.

Keefer, M. L., C. C. Caudill, C. A. Peery, and C. T. Boggs. 2008. Non-direct homing behaviours by adult Chinook salmon in a large, multi-stock river system. Journal of Fish Biology 72: 27-44.

Meekin, T. K., 1967. Report on the 1966 Wells Dam Chinook tagging study. Report to Douglas County PUD, Contract 001-01-022-4201. Washington Department of Fisheries, Olympia, WA. 41 p. (Available from Douglas County PUD, 1151 Valley Mall Parkway, East Wenatchee, WA 98801.)

Murdoch, A. R., T. N. Pearsons, and T. W. Maitland. 2009. The number of redds constructed per female spring Chinook salmon in the Wenatchee River basin. North American Journal of Fisheries Management 29: 441-446.

Murdoch, A. R., T. N. Pearsons, T. W. Maitland. 2010. Estimating the spawning escapement of hatchery- and natural-origin spring Chinook salmon using redd and carcass data. North American Journal of Fisheries Management 30: 361-375.

Peterson, J. T., R. F. Thurow, and J. W. Guzevich. 2004. An evaluation of multipass electrofishing for estimating the abundance of stream-dwelling salmonids. Transactions of the American Fisheries Society 113: 462-475.

Rosenberger, A. E., and J. B. Dunham. 2005. Validation of abundance estimates from markrecapture and removal techniques for rainbow trout captured by electrofishing in small streams. North American Journal of Fisheries Management 25: 1395-1410.

Seiler, D., L. Kishimoto, and S. Neuhauser. 1999. 1998 Skagit River wild 0+ Chinook production evaluation. Washington Department of Fish and Wildlife. Olympia, Washington. 73 pp.

Snake River Lab. 2015. Tucannon River spring Chinook salmon pre-spawn mortality investigations for 2014. Washington Department of Fish and Wildlife. 23 p.

Snake River Salmon Recovery Board (SRSRB). 2006. Technical Document Snake River Salmon Recovery Plan for S.E. Washington. Prepared for the Washington Governor’s Salmon Recovery Office. 408 pages, plus appendices.

Snake River Salmon Recovery Board (SRSRB). 2011. Technical Document Snake River Salmon Recovery Plan for S.E. Washington. Prepared for the Washington Governor’s Salmon Recovery Office. 272 pages, plus appendices.

Steinhorst, K., Y. Wu, B. Dennis, and P. Kline. 2004. Confidence intervals for fish outmigration estimates using stratified trap efficiency methods. Journal of Agricultural, Biological, and Environmental Statistics 9 (3): 284-299.

Tucannon Subbasin Summary. 2001. L. Gephart and D. Nordheim, editors. Prepared for the Northwest Power Planning Council. Dayton, Washington.

USACE (U.S. Army Corps of Engineers), 1975. Special Reports: Lower Snake River Fish and Wildlife Compensation Plan. Walla Walla, Washington.

Washington Department of Fish and Wildlife (WDFW). 2016. Washington Department of Fish and Wildlife Salmonid Stock Inventory Database. WDFW, Olympia. Available: http://wdfw.wa.gov/conservation/fisheries/sasi/ (June 2016).

Appendix A: Annual Takes for 2015

Appendix A. Table 1. Summary of maximum annual (calendar year) takes allowed and 2015 takes (in parenthesis) of listed Snake River spring Chinook salmon (Tucannon River Stock).

TYPE OF TAKE	Wild Spring Adults	Wild Spring Juvenile	Hatchery Spring Juvenile
Collect for Transport			
Observe/Harass ${ }^{\text {a }}$	$300(0)$	$4,000(0)$	$4,000(0)$
Capture, Handle and Release		$5,000(93)$	$100,000(4,195)$
Capture, Handle, Tag/Mark, and Release ${ }^{\text {b }}$	$30(0)$	$125(0)$	$20,000(2,313)$
Lethal Take $^{\text {c }}$		$10,000(391)$	$200(0)$
Spawning, Dead, or Dying	$1,500(62)$	$375(8)$	$50,000(14,962)$
Other Take (specify) ${ }^{\text {d }}$		0	$1,500(13)$
Indirect Mortality $^{\text {Incidental Take }{ }^{\text {e }}}$		0	
Incidental Mortality ${ }^{\text {e }}$			

${ }^{\text {a }}$ Refers to the number of fish observed during snorkel surveys (summer and fall precocial surveys; radio tag pinpointing).
${ }^{\text {b }}$ Refers to the number of fish marked at the smolt trap.
${ }^{\text {c }}$ Refers to the number of fish collected for organosomatic index samples.
${ }^{\mathrm{d}}$ Refers to the number of fish PIT tagged at the hatchery or smolt trap.
${ }^{\mathrm{e}}$ Refers to the number of fish collected or killed during electrofishing surveys.

Appendix A. Table 2. Summary of maximum annual (calendar year) takes allowed and 2015 takes (in parenthesis) of listed Snake River spring Chinook salmon (Tucannon River Stock).

TYPE OF TAKE	Wild Adults	Wild Jacks	Hatchery Adults	Hatchery Jacks	Wild Juvenile	Hatchery Juvenile
Collect for Transport $^{\text {a }}$	$300(158)$	N/A (1)	$300(195)$	N/A (19)		
Observe/Harass (Total of all fish trapped)	2,500 (271)	N/A (14)	2,500 (377)	NA (217)		
${\text { Capture, Handle and Release }{ }^{\text {b }}}^{2,500}\left(\begin{array}{c}\text { N/A } \\ (113)\end{array}\right.$	2,500 (156)	NA (192)				
Capture, Handle, Tag/Mark, and Release					247,500 $(207,859$ BY13)	
Lethal Take (Broodstock)	$300(100)$	N/A (0)	$300(29)$	NA (0)		
Spawning, Dead, or Dying ${ }^{\text {c }}$	$25(0)$	N/A (0)	$25(0)$	NA (0)		
Other Take (specify)			26	6		
Indirect Mortality $^{\text {e }}$		$10(1)$	N/A (0)	$10(1)$	NA (0)	
Incidental Take						
Incidental Mortality						

${ }^{a}$ Refers to the number fish collected for the hatchery broodstock. For 2016 this total includes 58 natural and 184 hatchery origin fish collected and held at LFH for adult outplanting.
${ }^{\mathrm{b}}$ Refers to the number of fish released upstream or downstream of the trap following capture.
${ }^{\text {c }}$ Refers to the number of fish that may die in the trap before release or taken for broodstock.
${ }^{\mathrm{d}}$ Stray fish are killed outright at the adult trap.
${ }^{e}$ Refers to the number of fish (collected for broodstock) that may die in transport or during broodstock holding.

Appendix B: Spring Chinook Captured, Transported to Lyons Ferry Hatchery, or Passed Upstream at the Tucannon Hatchery Trap in 2015

Appendix B. Spring Chinook salmon captured, transported to Lyons Ferry Hatchery, or passed upstream at the Tucannon Hatchery trap in 2015. (Trapping began in February; last day of trapping was September 30).

Date	Captured in Trap		Transported to LFH		Passed Upstream		Killed Outright ${ }^{\text {a }}$		Trap Mortality	
	Natural	Hatchery								
5/01		1				1				
5/03		1				1				
5/07		1				1				
5/08	1	2			1	2				
5/10	11	2			11	2				
5/11	4	1	4			1				
5/12	4	9	4	2		7				
5/13	7	7	5	7	2					
5/14	6	3	5	3	1					
5/15	6	10	5	10	1					
5/16	4	1			4	1				
5/17	5	10			5	10				
5/18	26	27	14	11	12	16				
5/19	21	31	15	19	6	12				
5/20	21	46	20	39	1	4		3		
5/21	23	31	18	20	5	11				
5/22	12	39	9	28	3	11				
5/23	5	10			5	10				
5/24	5	22			5	22				
5/25	18	36			18	30		6		
5/26	10	31	8	25	2	3		3		
5/27	9	7	7	3	2	4				
5/28	5	8	4	2	1	6				
5/29	4	9	4	7		1		1		
5/30	8	17			8	15		2		
5/31	3	12			3	8		4		
6/01	2	22	2	5		17				
6/03	7	14	7	7		7				
6/04	2	5	2	3		2				
6/05	1	3		3	1					
6/06	4	6			4	6				
6/07	4	7			4	7				
6/08	5	10	4		1	7		3		
6/09	2	8	2	6				2		
6/10	7	14	4	2		10		2		
6/11	3	10	1	3	2	7				
6/12	1	8			1	8				
6/13	4	6	4			6				
6/14	1	3			1	3				
6/15		9				8		1		
6/16		7		1		6				
6/17	1	3	1	1		2				
6/18		3				3				
6/21		2				2				
6/22	4	12	3	1	1	11				
6/23	1	5		1	1	4				
6/24		3				3				
6/25		2				2				
6/26		3				3				
6/27		5				5				
6/29	2	7	2	1		6				
6/30	1	1	1			1				

[^5]Appendix B (continued). Spring Chinook salmon captured, collected, or passed upstream at the Tucannon Hatchery trap in 2014. (T rapping began in February; last day of trapping was September 30).

Date	Captured in Trap		Transported to LFH		Passed Upstream		Killed Outright ${ }^{\text {a }}$		Trap Mortality	
	Natural	Hatchery								
7/02	2	8	2	2		6				
7/06	2	5	2	1		4				
7/09		1				1				
7/21		1						1		
7/27		1		1						
8/04	2	1			2			1		
8/05		1				1				
8/12		2				2				
8/13		2				2				
8/14		1						1		
8/21	1				1					
8/27	1	1			1	1				
8/31	2	1			2	1				
9/01		1				1				
9/02		1				1				
9/04	1	1			1	1				
9/05		3				3				
9/06		2				2				
9/07		1				1				
9/09	1	3			1	3				
9/12	2	3			2	3				
9/20	1				1					
9/22		2						2		
Total	285	594	$159{ }^{\text {b }}$	$214{ }^{\text {c }}$	126	348	0	32	0	0

${ }^{\text {a }}$ Fin clipped strays are killed outright at the trap.
${ }^{\text {b }}$ Of the 159 natural origin fish transported, 101 were held for broodstock and 58 were held for adult outplanting.
${ }^{\text {c }}$ Of the 214 hatchery origin fish transported, 30 were held for broodstock and 184 were held for adult outplanting.

Appendix C: Age Composition by Brood Year for Tucannon River Spring Chinook Salmon
 (1985-2010 BYs)

Appendix C. Age composition by brood year for natural and hatchery origin Tucannon River spring Chinook salmon (1985-2010 BYs). (Number at age is found in Tables 26 and 27).

Brood	Natural origin			Hatchery origin		
Year	\% Age 3	\% Age 4	\% Age 5	\% Age 3	\% Age 4	\% Age 5
1985	5.19	71.43	23.38	26.47	73.53	0.00
1986	0.69	79.86	19.44	42.47	53.23	4.30
1987	0.00	64.20	35.80	10.34	80.46	9.20
1988	0.47	64.45	35.07	21.70	66.04	12.26
1989	6.67	62.67	30.67	5.79	82.64	11.57
1990	3.85	80.77	15.38	14.29	76.19	9.52
1991	0.00	80.00	20.00	16.67	83.33	0.00
1992	1.96	82.35	15.69	17.46	79.37	3.17
1993	0.83	51.24	47.93	9.24	78.15	12.61
1994	0.00	88.89	11.11	7.41	77.78	14.81
1995	0.00	33.33	66.67	9.85	88.64	1.52
1996	0.00	93.10	6.90	29.53	67.11	3.36
1997	2.23	86.99	10.78	10.61	89.39	0.00
1998	2.19	66.42	31.39	14.46	69.88	15.66
1999	6.00	88.00	6.00	33.33	55.56	11.11
2000	0.61	89.70	9.70	12.96	87.04	0.00
2001	0.00	93.59	6.41	11.86	86.44	1.69
2002	0.95	64.76	34.29	4.35	86.96	8.70
2003	5.00	68.75	26.25	3.85	88.46	7.69
2004	2.35	86.47	11.18	10.29	86.76	2.94
2005	8.07	91.23	0.70	21.74	78.26	0.00
2006	7.94	73.95	18.11	23.17	69.50	7.34
2007	2.52	83.65	13.84	7.95	86.36	5.68
2008	5.46	81.97	12.57	19.71	75.91	4.38
2009	0.95	89.52	9.52	1.56	96.88	1.56
2010	1.92	87.18	10.90	3.39	93.22	3.39
Means	3.46	78.64	$\mathbf{1 7 . 9 0}$	$\mathbf{1 7 . 4 6}$	$\mathbf{7 6 . 0 3}$	$\mathbf{6 . 5 1}$

Appendix D: Total Estimated Run-Size of Tucannon River Spring Chinook Salmon (1985-2015)

Appendix D. Total estimated run-size of spring Chinook salmon to the Tucannon River, 1985-2015. (Includes breakdown of conventional hatchery supplementation, captive brood progeny and stray hatchery components).

Year	Natural Jacks	Natural Adults	Hatchery Jacks	Hatchery Adults	C.B. Jacks	C.B. Adults	Stray Jacks	Stray Adults	Total Natural	Total Hatchery	Total Run
1985	---	---	---	---	---	---	---	---	844	0	844
1986	---	---	---	---	---	---	---	---	636	0	636
1987	---	---	---	---	---	---	---	---	582	0	582
1988	19	391	19	---	---	---	---	---	410	19	429
1989	2	334	83	26	---	---	---	---	336	109	445
1990	0	493	19	220	---	---	0	14	493	253	746
1991	3	257	99	161	---	---	0	0	260	260	520
1992	12	379	13	258	---	---	0	10	391	281	672
1993	8	296	6	221	---	---	0	2	304	229	533
1994	0	98	5	37	---	---	0	0	98	42	140
1995	2	19	11	22	---	---	0	0	21	33	54
1996	2	140	15	63	---	---	0	3	142	81	223
1997	0	121	4	109	---	---	0	9	121	122	243
1998	0	85	16	39	---	---	0	0	85	55	140
1999	0	3	59	162	---	---	5	15	3	241	244
2000	14	68	13	196	---	---	5	41	82	255	337
2001	9	701	97	177	---	---	13	0	710	287	997
2002	9	341	11	546	---	---	0	97	350	654	1,004
2003	3	244	26	169	---	--	1	0	247	196	443
2004	0	400	19	134	3	0	0	16	400	172	572
2005	3	299	6	107	0	14	2	4	302	133	435
2006	7	145	2	100	2	2	0	8	152	114	266
2007	8	190	18	81	0	19	15	13	198	146	344
2008	131	403	291	102	158	82	23	1	534	657	1,191
2009	116	634	402	403	92	196	13	4	750	1,110	1,860
2010	41	1,402	74	679	0	306	4	17	1,443	1,080	2,523
2011	85	671	269	212	0	27	12	24	756	544	1,300
2012	7	806	8	385	---	---	0	29	813	422	1,235
2013	91	660	66	296	---	---	2	0	751	364	1,115
2014	41	857	62	114	---	---	0	12	898	188	1,086
2015	65	667	184	648	---	---	6	207	732	1,045	1,777

Appendix E: Stray Hatchery-Origin Spring Chinook Salmon in the Tucannon River (1990-2015)

Appendix E. Summary of identified stray hatchery origin spring Chinook salmon that escaped into the Tucannon River (1990-2015).

Year	CWT Code or Fin clip	Agency	Origin (stock)	Release Location / Release River	$\begin{gathered} \text { Number } \\ \text { Observed/ } \\ \text { Expanded }{ }^{\text {a }} \end{gathered}$	\% of Tuc. Run
1990	074327	ODFW	Carson (Wash.)	Meacham Cr./Umatilla River	2 / 5	
	074020	ODFW	Rapid River	Lookingglass Cr./Grande Ronde	$1 / 2$	
	232227	NMFS	Mixed Col.	Columbia River/McNary Dam	$2 / 5$	
	232228	NMFS	Mixed Col.	Columbia River/McNary Dam	$1 / 2$	
				Total Strays	14	1.9
1992	075107	ODFW	Lookingglass Cr.	Bonifer Pond/Umatilla River	2 / 6	
	075111	ODFW	Lookingglass Cr.	Meacham Cr./Umatilla River	$1 / 2$	
	075063	ODFW	Lookingglass Cr.	Meacham Cr./Umatilla River	$1 / 2$	
				Total Strays	10	1.3
1993	075110	ODFW	Lookingglass Cr.	Meacham Cr./Umatilla River	$1 / 2$	
				Total Strays	2	0.3
1996	070251	ODFW	Carson (Wash.)	Imeques AP/Umatilla River	$1 / 1$	
	LV clip	ODFW	Carson (Wash.)	Imeques AP/Umatilla River	$1 / 2$	
				Total Strays	3	1.3
1997	103042	IDFG	South Fork Salmon	Knox Bridge/South Fork Salmon	$1 / 2$	
	103518	IDFG	Powell	Powell Rearing Ponds/Lochsa R.	$1 / 2$	
	RV clip	ODFW	Carson (Wash.)	Imeques AP/Umatilla River	$3 / 5$	
				Total Strays	9	2.6
1999	091751	ODFW	Carson (Wash.)	Imeques AP/Umatilla River	2 / 3	
	092258	ODFW	Carson (Wash.)	Imeques AP/Umatilla River	$1 / 1$	
	104626	UI	Eagle Creek NFH	Eagle Creek NFH/Clackamas R.	$1 / 1$	
	LV clip	ODFW	Carson (Wash.)	Imeques AP/Umatilla River	$2 / 2$	
	RV clip	ODFW	Carson (Wash.)	Imeques AP/Umatilla River	$8 / 13$	
				Total Strays	20	8.2
2000	092259	ODFW	Carson (Wash.)	Imeques AP/Umatilla River	4 / 4	
	092260	ODFW	Carson (Wash.)	Imeques AP/Umatilla River	$1 / 1$	
	092262	ODFW	Carson (Wash.)	Imeques AP/Umatilla River	$1 / 3$	
	105137	IDFG	Powell	Walton Creek/Lochsa R.	1 / 3	
	636330	WDFW	Klickitat (Wash.)	Klickitat Hatchery	$1 / 1$	
	636321	WDFW	Lyons Ferry (Wash.)	Lyons Ferry/Snake River	$1 / 1$	
	LV clip	ODFW	Carson (Wash.)	Imeques AP/Umatilla River	$18 / 31$	
	Ad clip	ODFW	Carson (Wash.)	Imeques AP/Umatilla River	2 / 2	
				Total Strays	46	13.6
2001	076040	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	1/7	
	092828	ODFW	Imnaha R. \& Tribs.	Lookingglass/Imnaha River	1/3	
	092829	ODFW	Imnaha R. \& Tribs.	Lookingglass/Imnaha River	1/3	
				Total Strays	13	1.3

[^6]Appendix E (continued). Summary of identified stray hatchery origin spring Chinook salmon that escaped into the Tucannon River (1990-2015).

	$\begin{array}{c}\text { CWT } \\ \text { Code or } \\ \text { Fin clip }\end{array}$	Agency	$\begin{array}{c}\text { Origin } \\ \text { (stock) }\end{array}$	Release Location / Release	$\begin{array}{c}\text { Number } \\ \text { Observed/ } \\ \text { Expanded }\end{array}$	$\begin{array}{c}\text { \% of } \\ \text { Tuc. }\end{array}$
Rear						

[^7]Appendix E (continued). Summary of identified stray hatchery origin spring Chinook salmon that escaped into the Tucannon River (1990-2015).

Year	CWT Code or Fin clip	Agency	Origin (stock)	Release Location / Release River	Number Observed/ Expanded ${ }^{\text {a }}$	\% of Tuc. Run
2012	Ad clip	Unknown	Unknown	Unknown	9/29	
				Total Strays	29	2.3
2013	Ad clip	Unknown	Unknown	Unknown	2/2	
				Total Strays	2	0.2
2014	090471	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	1/1	
	090485	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	1/1	
	090282	ODFW	Lostine R.	Lookingglass/Lostine R.	1/11	
				Total Strays	13	1.2
2015	090552	ODFW	Imnaha R.	Lookingglass/Imnaha R.	1/14	
	090643	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	6/19	
	090652	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	15/123	
	090729	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	3/3	
	Ad clip	Unknown	Unknown	Unknown	28/54	
				Total Strays	213	12.0

[^8]
Appendix F: Final PIT Tag Detections of Returning Tucannon River Spring Chinook

Appendix F. Final PIT tag detections of returning Tucannon River spring Chinook from fish originally tagged as juveniles from the Tucannon River.

PIT Tag ID	Release Data			Adult Return Final Detection Data ${ }^{\text {a }}$			
	Origin	Length (mm)	Release Date	OBS	OBS Date	Travel Time	Est. Age
1F4E71071B	H	169	3/20/95	LGR	8/03/95	136	2
5042423B61	H	139	3/25/97	LGR	5/29/99	795	4
50470F3608	H	142	3/25/97	LGR	6/17/99	814	4
517D1E0552	W	112	4/22/99	BON	4/17/01	726	4
5202622F42	W	110	4/22/99	BON	4/19/01	728	4
517D1A197C	W	118	4/22/99	LGR	4/21/01	730	4
5176172874	W	108	4/29/99	LGR	4/29/01	731	4
5200712827	W	103	4/29/99	LGR	5/12/02	1109	5
5177201601	H	151	5/6/99	LGR	5/31/01	756	4
517D22216B	H	137	5/12/99	LGR	5/15/01	734	4
3D9.1BF1693290	H	130	5/07/02	LGR	5/23/04	747	4
3D9.1BF1677795	W	117	4/29/02	LGR	5/19/04	751	4
3D9.1BF16876C6	W	105	4/30/02	ICH	5/04/05	1100	5
3D9.1BF167698F	W	96	5/02/02	ICH	5/03/05	1097	5
3D9.1BF12F6891	H	136	4/21/03	ICH	5/09/04	392	3
3D9.1BF12F7182	H	115	4/21/03	ICH	5/19/04	396	3
3D9.1BF149E5EA	H	126	4/21/03	MCN	5/05/05	751	4
3D9.1BF1A2EF4B	W	104	12/07/05	LGR	6/16/08	922	5
3D9.257C5B558A	H	125	4/26/06	ICH	6/16/08	782	4
3D9.257C5A0975	W	113	11/20/06	MCN	5/29/09	921	5
3D9.1BF26E119D	H	170	4/12/07	LTR	5/22/08	406	3
3D9.257C6C4BAD	CB	142	4/12/07	ICH	5/15/08	399	3
3D9.257C6C1B20	CB	148	4/12/07	LTR	5/31/08	415	3
3D9.257C6C57DF	CB	125	4/12/07	ICH	5/31/08	415	3
3D9.1BF26D36B8	W	114	4/24/07	LTR	5/09/08	382	3
3D9.1BF26D389C	W	114	4/24/07	LTR	5/27/08	400	3
3D9.1BF26DB184	W	106	4/24/07	BON	5/02/09	739	4
3D9.1BF26DB741	W	118	4/24/07	ICH	5/10/09	747	4
3D9.1BF26DA2CB	W	103	4/23/07	ICH	5/10/09	748	4
3D9.1BF26D340D	W	102	4/16/07	ICH	5/06/09	751	4
3D9.1BF26D39F9	W	110	4/24/07	ICH	5/15/09	752	4
3D9.1BF26D693A	H	144	4/12/07	ICH	5/08/09	757	4
3D9.1BF26DFD75	H	112	4/12/07	MCN	5/11/09	760	4
3D9/257C6C514A	CB	125	4/12/07	ICH	5/17/09	766	4
3D9.1BF26DF8E5	W	118	4/02/07	ICH	5/09/09	768	4
3D9.1BF26DEE22	W	115	4/15/07	MCN	5/24/09	769	4

Abbreviations are as follows: BON - Bonneville Dam, TDA - The Dalles Dam, MCN - McNary Dam, ICH - Ice Harbor Dam, LTR - Lower Tucannon River, MTR

- Middle Tucannon River, UTR - Upper Tucannon River, LGO - Little Goose Dam, LGR - Lower Granite Dam, AFC - Asotin Creek.
${ }^{\text {a }}$ PIT tag adult detection systems were in operation beginning in 1988 for LGR, 1998 for BON, 2002 for MCN, 2005 for both ICH and LTR, 2011 for MTR and UTR, and 2012 for TFH.

Appendix F (continued). Final PIT tag detections of returning Tucannon River spring Chinook from fish originally tagged as juveniles from the Tucannon River.

PIT Tag ID	Release Data			Adult Return Final Detection Data ${ }^{\text {a }}$			
	Origin	Length (mm)	Release Date	OBS	OBS Date	Travel Time	Est. Age
3D9.257C59FC64	W	116	3/22/07	ICH	5/17/09	787	4
3D9.257C5BF3CB	W	95	1/16/07	BON	4/11/09	816	4
3D9.1BF27DF007	H	---	4/15/08	LTR ${ }^{\text {b }}$	7/08/08	84	2
3D9.1BF27E6923	H	---	4/15/08	MCN	5/11/09	391	3
3D9.1BF27E6615	H	---	4/15/08	ICH	5/12/09	392	3
3D9.1BF27E396B	H	144	4/15/08	ICH	5/14/09	394	3
3D9.1BF27E5152	H	---	4/15/08	MCN	5/14/09	394	3
3D9.1BF27DFA43	H	136	4/15/08	ICH	5/14/09	394	3
3D9.1BF27E45D5	H	---	4/15/08	BON	5/14/09	394	3
3D9.1BF27E5420	H	---	4/15/08	ICH	5/15/09	395	3
3D9.1BF27DC33A	H	---	4/15/08	MCN	5/16/09	395	3
3D9.1C2C4A2C09	CB	---	4/15/08	ICH	5/16/09	396	3
3D9.1BF27E0BF9	H	174	4/15/08	ICH	5/20/09	400	3
3D9.1BF27E4A9A	H	---	4/15/08	BON	5/21/09	401	3
3D9.1BF27DDDE3	H	125	4/15/08	ICH	5/21/09	401	3
3D9.1BF27E5F9D	H	---	4/15/08	MCN	5/23/09	403	3
3D9.1C2C4A17EF	CB	---	4/15/08	ICH	5/29/09	409	3
3D9.1C2C4AC01A	CB	---	4/15/08	ICH	5/13/09	393	3
3D9.1BF27E6750	H	---	4/15/08	LGR	6/07/09	418	3
3D9.1BF27E0B48	H	---	4/15/08	LGR	6/19/09	430	3
3D9.1BF27E335D	H	112	4/15/08	LGR	6/21/09	432	3
3D9.1BF27DEBAF	H	---	4/15/08	ICH	5/30/09	410	3
3D9.1BF27DE680	H	209	4/15/08	ICH	5/13/09	393	3
3D9.1BF27C49AC	W	120	4/02/08	ICH	6/10/09	434	3
3D9.1BF27C15D9	W	103	4/07/08	BON	4/29/10	752	4
3D9.1BF27C3C06	W	112	3/31/08	MCN	4/26/10	756	4
3D9.1BF27C3C7F	W	108	4/11/08	ICH	5/13/10	762	4
3D9.1BF27C4002	W	121	3/31/08	ICH	6/15/10	806	4
3D9.1BF27C43BD	W	104	3/31/08	LTR	5/06/10	766	4
3D9.1BF27C47C9	W	120	4/30/08	LTR	4/11/10	712	4
3D9.1BF27C4C13	W	113	4/08/08	LTR	4/27/10	747	4
3D9.1BF27C5838	W	120	4/04/08	ICH	5/06/10	762	4
3D9.1BF27C6137	W	105	4/20/08	LTR	5/01/10	741	4
3D9.1BF27C67B1	W	105	4/26/08	ICH	5/12/10	746	4
3D9.1BF27C681F	W	105	3/31/08	ICH	4/30/10	760	4
3D9.1BF27CEC4F	W	106	4/14/08	LGR	5/14/10	760	4

Abbreviations are as follows: BON - Bonneville Dam, TDA - The Dalles Dam, MCN - McNary Dam, ICH - Ice Harbor Dam, LTR - Lower Tucannon River, MTR

- Middle Tucannon River, UTR - Upper Tucannon River, LGO - Little Goose Dam, LGR - Lower Granite Dam, AFC - Asotin Creek.
${ }^{\text {a }}$ PIT tag adult detection systems were in operation beginning in 1988 for LGR, 1998 for BON, 2002 for MCN, 2005 for both ICH and LTR, 2011 for MTR and UTR, and 2012 for TFH.
${ }^{\mathrm{b}}$ This fish was detected bypassing the Tucannon River (LGO or LGR detection) before heading back downstream.

Appendix F (continued). Final PIT tag detections of returning Tucannon River spring Chinook from fish originally tagged as juveniles from the Tucannon River.

PIT Tag ID	Release Data			Adult Return Final Detection Data ${ }^{\text {a }}$			
	Origin	Length (mm)	Release Date	OBS	OBS Date	Travel Time	Est. Age
3D9.1BF27CF786	W	109	4/26/08	ICH	5/22/10	756	4
3D9.1BF27DD7AC	W	101	5/04/08	ICH	5/23/10	736	4
3D9.1BF27DE7AE	W	121	5/28/08	LTR	5/02/10	705	4
3D9.1BF27E114D	W	98	4/30/08	ICH	5/07/10	737	4
3D9.1BF27E3670	W	120	5/12/08	ICH	5/05/10	723	4
3D9.1BF27E3A3B	W	105	5/01/08	BON	4/30/10	729	4
3D9.1BF27E4969	W	111	5/02/08	ICH	5/18/10	746	4
3D9.1BF27E5ADF	W	108	4/30/08	ICH	5/15/10	745	4
3D9.1BF27E6A2A	W	103	5/15/08	LTR	5/09/10	725	4
3D9.1BF27E806F	W	119	5/27/08	ICH	5/07/10	710	4
3D9.1BF27EA280	W	102	5/04/08	LTR	5/06/10	732	4
3D9.1BF27EC355	W	111	5/03/08	ICH	5/16/10	744	4
3D9.1C2C87304F	W	96	4/20/08	BON	4/28/10	738	4
3D9.1C2C875C89	W	115	4/18/08	MCN	5/08/10	750	4
3D9.1C2C87D02B	W	110	4/18/08	ICH	5/09/10	746	4
3D9.1C2C87D789	W	99	4/20/08	MCN	5/01/10	742	4
3D9.1C2C9CA1D0	W	115	4/22/08	BON	4/25/10	734	4
3D9.1C2CA9921E	W	109	4/22/08	LGR	5/23/10	761	4
3D9.1C2CA9B076	W	118	4/21/08	BON	4/25/10	734	4
3D9.1BF27DBF36	H	---	4/15/08	LTR	5/09/10	754	4
3D9.1BF27DE0CD	H	---	4/15/08	BON	4/29/10	744	4
3D9.1BF27E0336	H	---	4/15/08	ICH	5/15/10	760	4
3D9.1BF27E196E	H	---	4/15/08	ICH	5/01/10	746	4
3D9.1BF27E3B75	H	---	4/15/08	ICH	4/22/10	737	4
3D9.1BF27E55A0	H	135	4/15/08	ICH	5/24/10	769	4
3D9.1BF27E8ADF	H	---	4/15/08	BON	4/25/10	740	4
3D9.1BF27EBB28	H	113	4/15/08	LTR	5/26/10	771	4
3D9.1BF27ECB41	H	124	4/15/08	ICH	5/14/10	759	4
3D9.1BF27ED02D	H	---	4/15/08	BON	5/09/10	754	4
3D9.1BF27E53AA	H	123	4/15/08	LTR	6/05/10	781	4
3D9.1BF27E5A15	H	---	4/15/08	ICH	5/19/10	764	4
3D9.1BF27E9E98	H	---	4/15/08	MCN	4/23/10	738	4
3D9.1BF27EAC50	H	---	4/15/08	LTR	5/05/10	750	4
3D9.1BF27EAD0A	H	153	4/15/08	ICH	5/10/10	755	4
3D9.1BF27E4C02	H	---	4/15/08	ICH	5/12/10	757	4
3D9.1BF27E172D	H	---	4/15/08	BON	4/21/10	736	4

Abbreviations are as follows: BON - Bonneville Dam, TDA - The Dalles Dam, MCN - McNary Dam, ICH - Ice Harbor Dam, LTR - Lower Tucannon River, MTR

- Middle Tucannon River, UTR - Upper Tucannon River, LGO - Little Goose Dam, LGR - Lower Granite Dam, AFC - Asotin Creek.
${ }^{\text {a }}$ PIT tag adult detection systems were in operation beginning in 1988 for LGR, 1998 for BON, 2002 for MCN, 2005 for both ICH and LTR, 2011 for MTR and UTR, and 2012 for TFH.

Appendix F (continued). Final PIT tag detections of returning Tucannon River spring Chinook from fish originally tagged as juveniles from the Tucannon River.

PIT Tag ID	Release Data			Adult Return Final Detection Data ${ }^{\text {a }}$			
	Origin	Length (mm)	Release Date	OBS	OBS Date	Travel Time	Est. Age
3D9.1BF27E066A	H	---	4/15/08	LGR	5/24/10	768	4
3D9.1BF27E0720	H	131	4/15/08	LGR	5/17/10	744	4
3D9.1BF27E0425	H	---	4/15/08	BON	4/28/10	743	4
3D9.1BF27E050F	H	---	4/15/08	MCN	4/26/10	741	4
3D9.1BF27DF85C	H	---	4/15/08	LTR	6/07/10	783	4
3D9.1BF27DEFC8	H	124	4/15/08	BON	4/23/10	738	4
3D9.1BF27CF491	H	---	4/15/08	LGR	5/19/10	764	4
3D9.1BF27DB43A	H	131	4/15/08	ICH	5/05/10	750	4
3D9.1BF27DC0B5	H	138	4/15/08	LTR	4/30/10	745	4
3D9.1BF27DC33F	H	---	4/15/08	LTR ${ }^{\text {b }}$	5/08/10	753	4
3D9.1BF27DEB6D	H	---	4/15/08	LTR	5/26/10	771	4
3D9.1C2C455F7C	CB	---	4/15/08	MCN	5/15/10	760	4
3D9.1C2C48AA85	CB	---	4/15/08	ICH	5/08/10	753	4
3D9.1C2C4AF06C	CB	---	4/15/08	LTR	5/05/10	750	4
3D9.1BF27C301A	W	98	4/24/08	LTR ${ }^{\text {b }}$	5/17/11	1118	5
3D9.1BF27C38CD	W	106	4/25/08	LTR	5/14/11	1114	5
3D9.1BF27C3DD3	W	103	4/17/08	LTR	5/11/11	1119	5
3D9.1BF27C524B	W	110	4/29/08	BON	4/26/11	1092	5
3D9.1BF27C65EB	W	103	4/27/08	ICH	6/16/11	1145	5
3D9.1BF27CDCC9	W	103	4/26/08	ICH	5/07/11	1106	5
3D9.1BF27CF043	W	98	4/01/08	LTR	5/12/11	1136	5
3D9.1BF27E02B6	W	101	5/03/08	BON	4/30/11	1092	5
3D9.1C2C97ECE2	W	103	4/23/08	MCN	5/09/11	1112	5
3D9.1BF27E0E0D	W	112	11/17/08	ICH	5/15/11	909	5
3D9.1BF27E4192	W	113	12/31/08	ICH	5/08/11	858	5
3D9.1BF27E502E	W	102	12/29/08	AFC	6/20/11	903	5
3D9.1BF27E54F2	W	111	11/26/08	MCN	6/30/11	946	5
3D9.1BF27E8A96	W	125	12/31/08	MCN	6/24/11	905	5
3D9.1BF27EB33D	W	111	12/11/08	ICH	5/24/11	893	5
3D9.1BF27EC294	H	130	4/15/08	MCN	5/07/11	1116	5
3D9.1BF27C382A	W	110	4/17/08	LTR	3/27/12	1440	6
3D9.1C2CFD0260	H	---	4/17/09	LTR	6/20/10	429	3
3D9.1C2D044E4D	H	---	4/17/09	LTR ${ }^{\text {b }}$	5/30/10	408	3
3D9.1C2D03EA21	H	---	4/17/09	ICH	5/18/10	396	3
3D9.1C2CFCCEAF	H	---	4/17/09	LTR	6/29/10	438	3
3D9.1C2CF467AE	H	---	4/17/09	ICH	5/12/10	390	3

Abbreviations are as follows: BON - Bonneville Dam, TDA - The Dalles Dam, MCN - McNary Dam, ICH - Ice Harbor Dam, LTR - Lower Tucannon River, MTR

- Middle Tucannon River, UTR - Upper Tucannon River, LGO - Little Goose Dam, LGR - Lower Granite Dam, AFC - Asotin Creek.
${ }^{\text {a }}$ PIT tag adult detection systems were in operation beginning in 1988 for LGR, 1998 for BON, 2002 for MCN, 2005 for both ICH and LTR, 2011 for MTR and UTR, and 2012 for TFH.
${ }^{\mathrm{b}}$ This fish was detected bypassing the Tucannon River (LGO or LGR detection) before heading back downstream.

Appendix F (continued). Final PIT tag detections of returning Tucannon River spring Chinook from fish originally tagged as juveniles from the Tucannon River.

PIT Tag ID	Release Data			Adult Return Final Detection Data ${ }^{\text {a }}$			
	Origin	Length (mm)	Release Date	OBS	OBS Date	Travel Time	Est. Age
3D9.1C2CFBAFCC	H	---	4/17/09	LTR ${ }^{\text {b }}$	5/24/11	767	4
3D9.1C2CFCD300	H	---	4/17/09	BON	5/17/11	760	4
3D9.1C2CFD176B	H	---	4/17/09	LGR	6/06/11	773	4
3D9.1C2D02834D	H	---	4/17/09	LTR	5/20/11	763	4
3D9.1C2D02ACF7	H	158	4/17/09	LGO ${ }^{\text {b }}$	5/17/11	760	4
3D9.1C2D034513	H	---	4/17/09	LTR	5/16/11	759	4
3D9.1C2D0357E4	H	194	4/17/09	LGR	6/21/11	781	4
3D9.1C2D040E6F	H	---	4/17/09	ICH	6/02/11	771	4
3D9.1BF27C2A80	W	110	5/02/09	ICH	5/11/11	739	4
3D9.1BF27C32F1	W	116	4/30/09	ICH	6/06/11	767	4
3D9.1BF27C34E2	W	131	5/01/09	ICH	5/17/11	746	4
3D9.1BF27C3AEE	W	114	4/27/09	LTR	5/10/11	743	4
3D9.1BF27C3EE4	W	117	5/10/09	ICH	5/20/11	740	4
3D9.1BF27C51C3	W	117	5/03/09	MCN	5/13/11	740	4
3D9.1BF27C610A	W	125	4/27/09	ICH	5/06/11	739	4
3D9.1BF27C652F	W	122	4/28/09	LTR	5/14/11	746	4
3D9.1BF27C6784	W	105	5/09/09	LTR	5/18/11	739	4
3D9.1BF27CE9F8	W	105	4/29/09	LTR	5/19/11	750	4
3D9.1BF27DB642	W	109	1/20/09	AFC	9/09/11	928	4
3D9.1BF27E20BB	W	99	1/27/09	MCN	5/15/11	838	4
3D9.1BF27E2615	W	128	4/19/09	ICH	6/22/11	794	4
3D9.1BF27EBF86	W	113	1/26/09	BON	5/14/11	838	4
3D9.1C2D031FC6	W	105	11/16/09	LGR	6/21/11	582	4
3D9.1C2CF44596	H	---	4/17/09	MTR	4/02/12	1081	5
3D9.1C2CF45F43	W	116	5/19/09	BON	4/24/12	1071	5
3D9.1C2CFCEF10	W	93	12/15/09	MTR	5/28/12	895	5
3D9.1C2CB17349	H	---	4/07/10	LTR	5/10/11	398	3
3D9.1C2CFBE7D3	H	---	4/07/10	ICH	5/16/11	404	3
3D9.1C2CFCA747	H	---	4/07/10	ICH	5/23/11	411	3
3D9.1C2CFCB6E1	H	---	4/07/10	ICH	5/24/11	412	3
3D9.1C2D0A57A9	H	---	4/07/10	LGR	5/11/11	399	3
3D9.1C2D0C6B10	H	---	4/07/10	ICH	5/20/11	408	3
3D9.1C2D0C6EC3	H	---	4/07/10	ICH	6/02/11	421	3
3D9.1C2D10D73B	H	---	4/07/10	LTR	7/04/11	453	3
3D9.1C2D116974	H	---	4/07/10	MCN	5/18/11	406	3
3D9.1C2D11BDED	H	---	4/07/10	ICH	5/22/11	410	3

[^9]Appendix F (continued). Final PIT tag detections of returning Tucannon River spring Chinook from fish originally tagged as juveniles from the Tucannon River.

PIT Tag ID	Release Data			Adult Return Final Detection Data ${ }^{\text {a }}$			
	Origin	Length (mm)	Release Date	OBS	OBS Date	Travel Time	Est. Age
3D9.1C2D1227AC	H	---	4/07/10	ICH	5/21/11	409	3
3D9.1C2D74B711	H	---	4/07/10	MCN	6/05/11	424	3
3D9.1C2D750B0B	H	---	4/07/10	LTR ${ }^{\text {b }}$	7/05/11	455	3
3D9.1C2D752277	H	---	4/07/10	ICH	6/06/11	425	3
3D9.1C2D754D65	H	---	4/07/10	LTR	6/04/11	423	3
3D9.1C2D755233	H	---	4/07/10	LGR	6/17/11	436	3
3D9.1C2D7555EA	H	---	4/07/10	ICH	5/30/11	418	3
3D9.1C2D755E10	H	---	4/07/10	ICH	6/07/11	426	3
3D9.1C2D756572	H	---	4/07/10	LTR	6/07/11	426	3
3D9.1C2D7565B1	H	---	4/07/10	LTR	6/15/11	434	3
3D9.1C2D756D09	H	---	4/07/10	ICH	6/06/11	425	3
3D9.1C2D75B9F9	H	---	4/07/10	ICH	6/04/11	423	3
3D9.1C2D75BAC1	H	---	4/07/10	BON	5/23/11	411	3
3D9.1C2D75C3CB	H	---	4/07/10	LGO ${ }^{\text {b }}$	7/02/11	451	3
3D9.1C2D75CA67	H	---	4/07/10	LTR	6/05/11	425	3
3D9.1C2D7A9C66	H	---	4/07/10	MCN	6/08/11	427	3
3D9.1C2D7AB0CD	H	---	4/07/10	ICH	6/06/11	425	3
3D9.1C2D7AB2FB	H	---	4/07/10	MCN	5/14/11	402	3
3D9.1C2D7ABE87	H	---	4/07/10	LTR	5/11/11	399	3
3D9.1C2D7ABEE8	H	---	4/07/10	LTR	5/20/11	408	3
3D9.1C2D7ABF15	H	---	4/07/10	BON	5/20/11	408	3
3D9.1C2D7AD6C0	H	---	4/07/10	ICH	6/16/11	435	3
3D9.1C2D7AF0D6	H	---	4/07/10	ICH	5/31/11	419	3
3D9.1C2D7AF13B	H	---	4/07/10	BON	5/16/11	404	3
3D9.1C2D7B4C96	H	---	4/07/10	BON	5/09/11	397	3
3D9.1C2D7B723E	H	---	4/07/10	ICH	5/29/11	417	3
3D9.1C2D7C5759	H	---	4/07/10	ICH	5/29/11	417	3
3D9.1C2D80F436	H	---	4/07/10	MCN	5/27/11	415	3
3D9.1C2D80FE10	H	---	4/07/10	BON	5/19/11	406	3
3D9.1C2D8102EE	H	---	4/07/10	BON	5/16/11	404	3
3D9.1C2D8142B7	H	---	4/07/10	MCN	6/05/11	424	3
3D9.1C2D8158FB	H	---	4/07/10	BON	5/23/11	411	3
3D9.1C2D824F31	H	---	4/07/10	LTR	5/18/11	406	3
3D9.1C2CF45F7D	W	116	4/11/10	LTR	4/02/11	356	3
3D9.1C2CF468D0	W	123	4/17/10	LTR	6/09/11	418	3
3D9.1C2CFC3BD4	W	109	5/07/10	LTR	4/01/11	330	3

Abbreviations are as follows: BON - Bonneville Dam, TDA - The Dalles Dam, MCN - McNary Dam, ICH - Ice Harbor Dam, LTR - Lower Tucannon River, MTR

- Middle Tucannon River, UTR - Upper Tucannon River, LGO - Little Goose Dam, LGR - Lower Granite Dam, AFC - Asotin Creek.
${ }^{\text {a }}$ PIT tag adult detection systems were in operation beginning in 1988 for LGR, 1998 for BON, 2002 for MCN, 2005 for both ICH and LTR, 2011 for MTR and UTR, and 2012 for TFH.
${ }^{\mathrm{b}}$ This fish was detected bypassing the Tucannon River (LGO or LGR detection) before heading back downstream.

Appendix F (continued). Final PIT tag detections of returning Tucannon River spring Chinook from fish originally tagged as juveniles from the Tucannon River.

PIT Tag ID	Release Data			Adult Return Final Detection Data ${ }^{\text {a }}$			
	Origin	Length (mm)	Release Date	OBS	OBS Date	Travel Time	Est. Age
3D9.1C2D030778	W	120	4/15/10	LTR	1/17/11	277	3
3D9.1C2D030B45	W	130	4/26/10	MCN	6/07/11	407	3
3D9.1C2D03E72B	W	97	4/19/10	LTR	5/30/11	406	3
3D9.1C2D03EF5F	W	116	2/01/10	LTR	5/31/11	484	3
3D9.1C2CB10281	H	---	4/07/10	MTR	6/28/12	813	4
3D9.1C2CFB857B	H	---	4/07/10	TFH	9/07/12	884	4
3D9.1C2D07E9D1	H	--	4/07/10	MTR ${ }^{\text {b }}$	6/02/12	787	4
3D9.1C2D0C2DA7	H	---	4/07/10	MTR	5/24/12	778	4
3D9.1C2D0C5BED	H	---	4/07/10	MTR	5/19/12	773	4
3D9.1C2D0D1C3C	H	---	4/07/10	UTR	5/26/12	778	4
3D9.1C2D0D4DF0	H	---	4/07/10	MTR	5/22/12	776	4
3D9.1C2D10D771	H	---	4/07/10	UTR	6/13/12	798	4
3D9.1C2D10D97F	H	---	4/07/10	MTR ${ }^{\text {b }}$	6/3/12	788	4
3D9.1C2D1187CD	H	---	4/07/10	MTR	5/22/12	776	4
3D9.1C2D74B7DA	H	---	4/07/10	LGR	5/15/12	769	4
3D9.1C2D74B82A	H	---	4/07/10	UTR	5/26/12	780	4
3D9.1C2D74BF68	H	---	4/07/10	UTR	5/28/12	782	4
3D9.1C2D74C77F	H	---	4/07/10	MTR	5/24/12	778	4
3D9.1C2D754D26	H	---	4/07/10	BON	4/24/12	748	4
3D9.1C2D759A04	H	---	4/07/10	UTR	5/24/12	778	4
3D9.1C2D7A9292	H	---	4/07/10	MTR	5/19/12	773	4
3D9.1C2D7A941E	H	---	4/07/10	UTR ${ }^{\text {b }}$	6/14/12	799	4
3D9.1C2D7AB43F	H	---	4/07/10	MTR	4/3/12	727	4
3D9.1C2D7AB4B3	H	---	4/07/10	BON	5/9/12	763	4
3D9.1C2D7AB60D	H	---	4/07/10	LTR	5/9/12	763	4
3D9.1C2D7ACCC9	H	---	4/07/10	BON	4/22/12	746	4
3D9.1C2D7AE415	H	---	4/07/10	MTR	5/20/12	774	4
3D9.1C2D7AE70C	H	---	4/07/10	LTR	4/24/12	747	4
3D9.1C2D7AFC8E	H	---	4/07/10	MTR	3/31/12	724	4
3D9.1C2D7B0029	H	---	4/07/10	TFH	8/29/12	875	4
3D9.1C2D7B39BD	H	---	4/07/10	TFH	4/26/12	750	4
3D9.1C2D7B4B24	H	---	4/07/10	BON	5/08/12	762	4
3D9.1C2D7B5A59	H	---	4/07/10	BON	5/15/12	769	4
3D9.1C2D7B86D6	H	---	4/07/10	MTR	5/21/12	775	4
3D9.1C2D7BB359	H	---	4/07/10	AFC	7/01/12	816	4
3D9.1C2D7C0465	H	---	4/07/10	LTR	5/12/12	766	4

Abbreviations are as follows: BON - Bonneville Dam, TDA - The Dalles Dam, MCN - McNary Dam, ICH - Ice Harbor Dam, LTR - Lower Tucannon River, MTR

- Middle Tucannon River, UTR - Upper Tucannon River, LGO - Little Goose Dam, LGR - Lower Granite Dam, AFC - Asotin Creek.
${ }^{\text {a }}$ PIT tag adult detection systems were in operation beginning in 1988 for LGR, 1998 for BON, 2002 for MCN, 2005 for both ICH and LTR, 2011 for MTR and UTR, and 2012 for TFH.
${ }^{\mathrm{b}}$ This fish was detected bypassing the Tucannon River (LGO or LGR detection) before heading back downstream.

Appendix F (continued). Final PIT tag detections of returning Tucannon River spring Chinook from fish originally tagged as juveniles from the Tucannon River.

PIT Tag ID	Release Data			Adult Return Final Detection Data ${ }^{\text {a }}$			
	Origin	Length (mm)	Release Date	OBS	OBS Date	Travel Time	Est. Age
3D9.1C2D7C4237	H	---	4/07/10	MTR	6/14/12	799	4
3D9.1C2D7C4BBC	H	---	4/07/10	MTR	3/31/12	724	4
3D9.1C2D80D818	H	---	4/07/10	MTR	5/29/12	783	4
3D9.1C2D812B48	H	---	4/07/10	UTR	5/26/12	780	4
3D9.1C2D815183	H	---	4/07/10	MTR	5/21/12	775	4
3D9.1C2D8243D7	H	---	4/07/10	MTR	5/19/12	773	4
3D9.1C2D825C9D	H	---	4/07/10	MTR	5/26/12	780	4
3D9.1C2D826D4F	H	---	4/07/10	MTR	5/19/12	773	4
3D9.1C2D826F4D	H	---	4/07/10	LTR	5/21/12	775	4
3D9.1C2D828612	H	---	4/07/10	MTR	5/19/12	773	4
3D9.1C2D829474	H	---	4/07/10	LTR	5/24/12	778	4
3D9.1C2D829B73	H	---	4/07/10	LGR	5/23/12	777	4
3D9.1C2D0C6405	H	---	4/07/10	UTR	5/12/13	1131	5
3D9.1C2CFB5F1B	W	105	5/02/10	LTR	4/07/12	706	4
3D9.1C2CFD12B3	W	120	4/29/10	MTR	5/21/12	753	4
3D9.1C2CFF248D	W	116	5/10/10	BON	5/02/12	768	4
3D9.1C2D02D770	W	119	5/06/10	MTR	6/11/12	768	4
3D9.1C2D02EB49	W	104	5/07/10	AFC	9/27/12	874	4
3D9.1C2D03599C	W	101	4/05/10	LTR	4/18/12	743	4
3D9.1C2D03A283	W	112	5/13/10	LTR	6/14/12	763	4
3D9.1C2CF44450	W	93	12/20/10	LTR	4/25/12	492	4
3D9.1C2D03EECD	W	125	3/26/10	TFH	6/17/13	1179	5
3D9.1C2D031A03	W	97	4/29/10	TFH	6/15/13	1143	5
3D9.1C2CFC3DD5	W	115	5/14/10	TDA	5/05/13	1087	5
3D9.1C2CF52775	W	83	11/15/10	UTR	5/18/13	915	5
3D9.1C2CF52CD5	W	80	12/09/10	AFC	9/20/13	915	5
3D9.1C2D9FAD7C	H	110	4/16/11	MTR	3/28/12	347	3
3D9.1C2D9FAFB1	H	107	4/16/11	LTR	4/22/12	373	3
3D9.1C2DA0DB23	H	105	4/16/11	LTR	3/26/12	345	3
3D9.1C2DA2D949	H	98	4/16/11	TFH	4/24/12	374	3
3D9.1C2DC02030	H	121	4/16/11	UTR	4/01/12	351	3
3D9.1C2DC03995	H	147	4/16/11	MTR	4/01/12	351	3
3D9.1C2DC172E2	H	164	4/16/11	LTR	4/02/12	351	3
3D9.1C2DC19AEF	H	155	4/16/11	UTR	7/02/12	443	3
3D9.1C2DC19B8B	H	142	4/16/11	UTR	6/02/12	413	3
3D9.1C2DC31A5A	H	154	4/16/11	LTR	5/22/12	402	3

Abbreviations are as follows: BON - Bonneville Dam, TDA - The Dalles Dam, MCN - McNary Dam, ICH - Ice Harbor Dam, LTR - Lower Tucannon River, MTR

- Middle Tucannon River, UTR - Upper Tucannon River, LGO - Little Goose Dam, LGR - Lower Granite Dam, AFC - Asotin Creek.
${ }^{\text {a }}$ PIT tag adult detection systems were in operation beginning in 1988 for LGR, 1998 for BON, 2002 for MCN, 2005 for both ICH and LTR, 2011 for MTR and UTR, and 2012 for TFH.

Appendix F (continued). Final PIT tag detections of returning Tucannon River spring Chinook from fish originally tagged as juveniles from the Tucannon River.

PIT Tag ID	Release Data			Adult Return Final Detection Data ${ }^{\text {a }}$			
	Origin	Length (mm)	Release Date	OBS	OBS Date	Travel Time	Est. Age
3D9.1C2DC34F18	H	128	4/16/11	MTR	12/03/12	597	3
3D9.1C2DC3FB56	H	124	4/16/11	MTR	6/07/12	418	3
3D9.1C2DC4BAA0	H	122	4/16/11	MTR	3/18/12	337	3
3D9.1C2DC4C76D	H	149	4/16/11	BON	5/08/12	388	3
3D9.1C2DCA0C73	H	148	4/16/11	UTR ${ }^{\text {b }}$	7/02/12	443	3
3D9.1C2D817ABD	H	119	4/16/11	TFH	6/09/13	780	4
3D9.1C2D81924A	H	115	4/16/11	UTR	5/29/13	765	4
3D9.1C2D8444A7	H	105	4/16/11	TFH	6/08/13	784	4
3D9.1C2D846942	H	108	4/16/11	BON	5/03/13	748	4
3D9.1C2D9FC789	H	110	4/16/11	UTR	5/24/13	769	4
3D9.1C2DA03139	H	107	4/16/11	TFH	6/07/13	773	4
3D9.1C2DA04F21	H	117	4/16/11	UTR	5/18/13	763	4
3D9.1C2DA2F58B	H	---	4/16/11	TFH	6/23/13	799	4
3D9.1C2DBF6BA9	H	141	4/16/11	TFH	6/11/13	773	4
3D9.1C2DBF6BBC	H	157	4/16/11	TFH	6/10/13	786	4
3D9.1C2DC00CEF	H	169	4/16/11	TFH	6/07/13	783	4
3D9.1C2DC0450F	H	152	4/16/11	TFH	5/30/13	775	4
3D9.1C2DC070AB	H	157	4/16/11	UTR	6/21/13	771	4
3D9.1C2DC182B7	H	176	4/16/11	TDA	4/29/13	744	4
3D9.1C2DC19B5C	H	156	4/16/11	BON	5/05/13	750	4
3D9.1C2DC19E38	H	170	4/16/11	TDA	5/21/13	766	4
3D9.1C2DC1A8B3	H	148	4/16/11	TFH	5/27/13	767	4
3D9.1C2DC29D7D	H	148	4/16/11	TFH	5/22/13	767	4
3D9.1C2DC361C7	H	134	4/16/11	UTR ${ }^{\text {b }}$	5/28/13	773	4
3D9.1C2DC3D35F	H	127	4/16/11	UTR	5/22/13	767	4
3D9.1C2DC43449	H	164	4/16/11	TFH	6/25/13	772	4
3D9.1C2DC45465	H	130	4/16/11	TFH	7/07/13	772	4
3D9.1C2DC4673F	H	158	4/16/11	TFH	6/30/13	806	4
3D9.1C2DC4ADF3	H	165	4/16/11	TFH	6/04/13	780	4
3D9.1C2DC5085D	H	142	4/16/11	MTR	5/06/13	751	4
3D9.1C2DC52B1C	H	143	4/16/11	TFH	6/08/13	773	4
3D9.1C2DC91C7A	H	121	4/16/11	TFH	6/30/13	806	4
3D9.1C2DC9248E	H	131	4/16/11	UTR	5/30/13	762	4
3D9.1C2DC9A9FC	H	150	4/16/11	TFH	6/12/13	769	4
3D9.1C2DC9B125	H	134	4/16/11	UTR	6/04/13	761	4
3D9.1C2DC9EA81	H	173	4/16/11	TFH	6/08/13	784	4

[^10]Appendix F (continued). Final PIT tag detections of returning Tucannon River spring Chinook from fish originally tagged as juveniles from the Tucannon River.

PIT Tag ID	Release Data			Adult Return Final Detection Data ${ }^{\text {a }}$			
	Origin	Length (mm)	Release Date	OBS	OBS Date	Travel Time	Est. Age
3D9.1C2DA06E4C	H	109	4/16/11	MTR	3/07/14	1056	5
3D9.1C2D751A48	W	114	4/05/11	BON	5/22/12	413	3
3D9.1C2D752AEA	W	86	2/02/11	LTR	4/25/12	449	3
3D9.1C2D80E283	W	101	5/15/11	LTR	4/01/12	322	3
3D9.1C2D810EC1	W	110	5/13/11	LTR	4/21/12	344	3
3D9.1C2DCA49A5	W	126	4/17/11	BON	9/26/12	528	3
3D9.1C2DCA78FE	W	110	4/21/11	LTR	4/01/12	346	3
3D9.1C2DCAD4E4	W	104	4/24/11	LTR	4/26/12	368	3
3D9.1C2DCB037F	W	106	4/15/11	UTR	6/18/12	430	3
3D9.1C2DCB1BF3	W	104	4/29/11	LTR	3/31/12	336	3
3D9.1C2DCB9A41	W	98	5/08/11	LTR	4/26/12	352	3
3D9.1C2DCC07AE	W	95	4/29/11	LTR	5/03/12	370	3
3D9.1C2DCC4647	W	112	4/24/11	LTR	4/23/12	363	3
3D9.1C2D74F991	W	91	3/15/11	TFH	6/04/13	812	4
3D9.1C2DCAB790	W	110	4/17/11	TFH	6/17/13	787	4
3D9.1C2DCA9CB6	W	115	4/18/11	UTR	5/10/13	753	4
3D9.1C2DCADF0D	W	107	4/21/11	TFH	6/20/13	791	4
3D9.1C2D6F5121	W	108	4/25/11	LTR	5/21/13	757	4
3D9.1C2DCAEA83	W	115	4/26/11	TFH	5/28/13	757	4
3D9.1C2DCBB53A	W	104	4/27/11	UTR ${ }^{\text {b }}$	6/11/13	776	4
3D9.1C2DCBEA6D	W	106	4/27/11	UTR ${ }^{\text {b }}$	5/13/13	747	4
3D9.1C2D7B5F96	W	105	5/02/11	UTR	5/20/13	749	4
3D9.1C2D7A9160	W	101	5/14/11	TFH	6/07/13	755	4
3D9.1C2DCA977B	W	85	4/17/11	UTR	5/10/14	1119	5
3D9.1C2DCBF689	W	112	4/23/11	BON	5/16/14	1119	5
3D9.1C2D6F9B00	W	105	4/26/11	UTR	6/07/14	1138	5
3D9.1C2D7B9F0A	W	106	4/30/11	TFH	7/06/14	1132	5
3D9.1C2DC809DB	H	154	4/16/12	TFH	7/15/13	415	3
3D9.1C2DC852D4	H	111	4/16/12	UTR	6/26/13	436	3
3D9.1C2DC853A6	H	134	4/16/12	UTR ${ }^{\text {b }}$	6/17/13	427	3
3D9.1C2DCB165D	H	116	4/16/12	UTR	5/29/13	408	3
3D9.1C2DCE4C77	H	---	4/16/12	UTR ${ }^{\text {b }}$	6/15/13	425	3
3D9.1C2DCE4C9F	H	115	4/16/12	LTR	5/17/13	396	3
3D9.1C2DCF2BC0	H	168	4/16/12	MTR ${ }^{\text {b }}$	5/31/13	410	3
3D9.1C2DCF3297	H	129	4/16/12	TFH ${ }^{\text {b }}$	7/12/13	427	3
3D9.1C2DCF6319	H	138	4/16/12	UTR ${ }^{\text {b }}$	6/10/13	420	3

Abbreviations are as follows: BON - Bonneville Dam, TDA - The Dalles Dam, MCN - McNary Dam, ICH - Ice Harbor Dam, LTR - Lower Tucannon River, MTR

- Middle Tucannon River, UTR - Upper Tucannon River, LGO - Little Goose Dam, LGR - Lower Granite Dam, AFC - Asotin Creek.
${ }^{\text {a }}$ PIT tag adult detection systems were in operation beginning in 1988 for LGR, 1998 for BON, 2002 for MCN, 2005 for both ICH and LTR, 2011 for MTR and UTR, and 2012 for TFH.
${ }^{\mathrm{b}}$ This fish was detected bypassing the Tucannon River (LGO or LGR detection) before heading back downstream.

Appendix F (continued). Final PIT tag detections of returning Tucannon River spring Chinook from fish originally tagged as juveniles from the Tucannon River.

PIT Tag ID	Release Data			Adult Return Final Detection Data ${ }^{\text {a }}$			
	Origin	$\begin{gathered} \text { Length } \\ \text { (mm) } \end{gathered}$	Release Date	OBS	OBS Date	Travel Time	Est. Age
3D9.1C2DCF6E41	H	178	4/16/12	TFH	6/07/13	417	3
3D9.1C2DCF99B4	H	159	4/16/12	UTR	7/01/13	441	3
3D9.1C2DCFA2AE	H	151	4/16/12	UTR	5/31/13	410	3
3D9.1C2DCF9410	H	165	4/16/12	UTR	3/09/14	692	4
3D9.1C2DCF2D72	H	179	4/16/12	UTR	3/10/14	693	4
3D9.1C2DCF8FC4	H	130	4/16/12	UTR	3/12/14	695	4
3D9.1C2DC87009	H	99	4/16/12	BON	4/23/14	737	4
3D9.1C2DC860F9	H	141	4/16/12	TDA	4/30/14	744	4
3D9.1C2DC8639B	H	158	4/16/12	UTR	5/15/14	759	4
3D9.1C2DD3F125	H	128	4/16/12	UTR	5/17/14	761	4
3D9.1C2DC856B2	H	127	4/16/12	UTR	5/19/14	763	4
3D9.1C2DC83952	H	165	4/16/12	UTR	5/20/14	764	4
3D9.1C2DCF6493	H	148	4/16/12	UTR	5/21/14	765	4
3D9.1C2DD01532	H	110	4/16/12	UTR	5/24/14	768	4
3D9.1C2DC838D7	H	133	4/16/12	UTR	6/07/14	782	4
3D9.1C2DCB0989	H	103	4/16/12	TFH	7/01/14	806	4
3D9.1C2DD00959	H	108	4/16/12	TFH	7/03/14	808	4
3D9.1C2DC8546B	H	172	4/16/12	TFH	6/10/14	785	4
3D9.1C2DCFB566	H	115	4/16/12	UTR ${ }^{\text {b }}$	5/16/15	1125	5
3D9.1C2DCE41D6	H	118	4/16/12	TFH	6/02/15	1131	5
3D9.1C2CF46D35	W	117	5/02/12	UTR	5/20/14	748	4
3D9.1C2CF4979F	W	104	5/03/12	UTR ${ }^{\text {b }}$	6/01/14	759	4
3D9.1C2CF51B24	W	101	4/22/12	UTR	6/18/14	787	4
3D9.1C2CF51F21	W	111	5/02/12	TFH	6/28/14	787	4
3D9.1C2CF68759	W	111	4/22/12	AFC	7/08/14	807	4
3D9.1C2CFC73E8	W	115	4/17/12	TFH ${ }^{\text {b }}$	8/28/14	778	4
3D9.1C2D0007AA	W	105	4/17/12	ICH	5/13/14	756	4
3D9.1C2D02AAF1	W	110	4/20/12	TFH	8/27/14	859	4
3D9.1C2D03180C	W	101	5/09/12	WL1	7/16/14	798	4
3D9.1C2D031EBC	W	107	5/05/12	TFH ${ }^{\text {b }}$	6/08/14	764	4
3D9.1C2D039F3E	W	124	4/19/12	UTR	6/25/14	778	4
3D9.1C2D03EA08	W	101	4/20/12	LTR	7/19/14	686	4
3D9.1C2D74C67B	W	99	3/03/12	UTR ${ }^{\text {b }}$	5/23/14	811	4
3D9.1C2D74FEBA	W	108	3/06/12	UTR	5/27/14	812	4
3D9.1C2D780CFE	W	96	5/17/12	BON	4/25/14	708	4
3D9.1C2D80D5FB	W	117	5/13/12	LTR	1/28/14	887	4

Abbreviations are as follows: BON - Bonneville Dam, TDA - The Dalles Dam, MCN - McNary Dam, ICH - Ice Harbor Dam, LTR - Lower Tucannon River, MTR

- Middle Tucannon River, UTR - Upper Tucannon River, LGO - Little Goose Dam, LGR - Lower Granite Dam, AFC - Asotin Creek, WL1 - Wilson Creek, Entiat River..
${ }^{\text {a }}$ PIT tag adult detection systems were in operation beginning in 1988 for LGR, 1998 for BON, 2002 for MCN, 2005 for both ICH and LTR, 2011 for MTR and UTR, and 2012 for TFH.
${ }^{\mathrm{b}}$ This fish was detected bypassing the Tucannon River (LGO or LGR detection) before heading back downstream.

Appendix F (continued). Final PIT tag detections of returning Tucannon River spring Chinook from fish originally tagged as juveniles from the Tucannon River.

PIT Tag ID	Release Data			Adult Return Final Detection Data ${ }^{\text {a }}$			
	Origin	Length (mm)	Release Date	OBS	OBS Date	Travel Time	Est. Age
3D9.1C2D813C48	W	93	5/17/12	TFH ${ }^{\text {b }}$	6/04/14	745	4
3D9.1C2DF588B4	W	105	12/10/12	LGR	9/27/14	656	4
3D9.1C2CFD4F61	W	112	4/20/12	TFH ${ }^{\text {b }}$	5/22/15	1127	5
3D9.1C2D05017C	W	105	4/19/12	TFH	5/10/15	1116	5
3D9.1C2CFC993C	W	100	4/20/12	TFH ${ }^{\text {b }}$	5/22/15	1127	5
3D9.1C2D8A9CB1	W	109	12/10/12	MTR	6/25/15	927	5
3D9.1C2DF58C64	W	92	12/13/12	UTR	5/21/15	889	5
3D9.1C2DE837AF	H	117	4/12/13	LTR	3/07/14	329	3
3D9.1C2DE83BA5	H	91	4/12/13	MTR	3/13/14	335	3
3D9.1C2E02E2D8	H	146	4/12/13	UTR ${ }^{\text {b }}$	6/17/14	431	3
3D9.1C2E0A1490	H	118	4/12/13	MTR	5/27/14	410	3
3DD.003B9D167B	H	117	4/12/13	UTR ${ }^{\text {b }}$	6/03/14	417	3
3DD.003B9D1BBC	H	102	4/12/13	UTR	3/11/14	333	3
3DD.003B9D1EC2	H	108	4/12/13	UTR	3/10/14	332	3
3DD.003B9D214A	H	129	4/12/13	UTR	3/10/14	332	3
3DD.003B9D29FE	H	113	4/12/13	UTR	5/27/14	410	3
3DD.003B9D2C34	H	116	4/12/13	UTR ${ }^{\text {b }}$	6/04/14	418	3
3DD.003B9D2FCD	H	108	4/12/13	UTR	6/02/14	416	3
3DD.003B9D31F3	H	111	4/12/13	UTR	5/27/14	410	3
3D9.1C2DE8C3E2	H	120	4/12/13	MTR	5/10/15	758	4
3D9.1C2DE925DA	H	125	4/12/13	UTR ${ }^{\text {b }}$	5/12/15	760	4
3D9.1C2DE9368F	H	110	4/12/13	TFH	5/20/15	768	4
3D9.1C2DE959B0	H	103	4/12/13	TDA	5/29/15	777	4
3D9.1C2DE99306	H	140	4/12/13	TFH	5/23/15	771	4
3D9.1C2DE9ABF3	H	118	4/12/13	UTR	5/23/15	771	4
3D9.1C2DE9B0BA	H	115	4/12/13	UTR ${ }^{\text {b }}$	5/18/15	766	4
3D9.1C2E033E98	H	106	4/12/13	TFH	5/29/15	777	4
3DD.003B9D1935	H	104	4/12/13	UTR ${ }^{\text {b }}$	5/23/15	771	4
3DD.003B9D1AC0	H	132	4/12/13	UTR ${ }^{\text {b }}$	6/10/15	789	4
3DD.003B9D1B26	H	103	4/12/13	UTR ${ }^{\text {b }}$	5/22/15	770	4
3DD.003B9D1D63	H	107	4/12/13	UTR	5/16/15	764	4
3DD.003B9D2095	H	124	4/12/13	BON	5/16/15	764	4
3DD.003B9D244F	H	106	4/12/13	UTR	5/18/15	766	4
3DD.003B9D25E2	H	155	4/12/13	UTR ${ }^{\text {b }}$	6/01/15	780	4
3DD.003B9D2627	H	106	4/12/13	UTR	5/11/15	759	4
3DD.003B9D2727	H	99	4/12/13	TFH ${ }^{\text {b }}$	5/22/15	770	4

Abbreviations are as follows: BON - Bonneville Dam, TDA - The Dalles Dam, MCN - McNary Dam, ICH - Ice Harbor Dam, LTR - Lower Tucannon River, MTR

- Middle Tucannon River, UTR - Upper Tucannon River, LGO - Little Goose Dam, LGR - Lower Granite Dam, AFC - Asotin Creek.
${ }^{\text {a }}$ PIT tag adult detection systems were in operation beginning in 1988 for LGR, 1998 for BON, 2002 for MCN, 2005 for both ICH and LTR, 2011 for MTR and UTR, and 2012 for TFH.
${ }^{\mathrm{b}}$ This fish was detected bypassing the Tucannon River (LGO or LGR detection) before heading back downstream.

Appendix F (continued). Final PIT tag detections of returning Tucannon River spring Chinook from fish originally tagged as juveniles from the Tucannon River.

PIT Tag ID	Release Data			Adult Return Final Detection Data ${ }^{\text {a }}$			
	Origin	Length (mm)	Release Date	OBS	OBS Date	Travel Time	Est. Age
3DD.003B9D281C	H	110	4/12/13	UTR ${ }^{\text {b }}$	5/27/15	775	4
3DD.003B9D2838	H	128	4/12/13	UTR	5/27/15	775	4
3DD.003B9D29EC	H	116	4/12/13	MTR ${ }^{\text {b }}$	5/15/15	763	4
3DD.003B9D2AEA	H	109	4/12/13	UTR	5/09/15	757	4
3DD.003B9D2DDC	H	125	4/12/13	UTR ${ }^{\text {b }}$	5/11/15	759	4
3DD.003B9D2ED0	H	116	4/12/13	UTR	5/24/15	772	4
3DD.003B9D321E	H	123	4/12/13	TFH ${ }^{\text {b }}$	5/22/15	770	4
3D9.1C2DF74B96	W	111	4/18/13	LTR	3/05/14	320	3
3D9.1C2DF60D13	W	117	4/04/13	LTR	3/04/14	334	3
3D9.1C2DF7025E	W	120	4/15/13	TDA	6/04/14	415	3
3D9.1C2DF5DE4B	W	103	4/16/13	LGR	10/02/14	534	3
3D9.1C2D8A76AF	W	98	3/05/13	TFH	5/24/15	810	4
3D9.1C2DF5F7BA	W	125	3/19/13	MCN	7/09/15	842	4
3D9.1C2DF60BD1	W	99	3/19/13	TFH ${ }^{\text {b }}$	5/23/15	795	4
3D9.1C2DF58C89	W	101	3/25/13	TFH	5/24/15	790	4
3D9.1C2DF5C27F	W	103	3/25/13	UTR ${ }^{\text {b }}$	6/03/15	800	4
3D9.1C2DF5CF8F	W	122	4/02/13	BON	4/30/15	758	4
3D9.1C2DF61573	W	118	4/08/13	UTR ${ }^{\text {b }}$	5/16/15	768	4
3D9.1C2DF72A0B	W	126	4/09/13	UTR	5/08/15	759	4
3D9.1C2DF58547	W	110	4/10/13	UTR ${ }^{\text {b }}$	6/06/15	787	4
3D9.1C2DF5EC24	W	116	4/10/13	TFH ${ }^{\text {b }}$	6/05/15	786	4
3D9.1C2DF5FF40	W	116	4/11/13	TFH ${ }^{\text {b }}$	5/23/15	772	4
3D9.1C2DF6C4D5	W	125	4/11/13	UTR ${ }^{\text {b }}$	5/29/15	778	4
3D9.1C2DF59B0B	W	110	4/14/13	UTR ${ }^{\text {b }}$	5/23/15	769	4
3D9.1C2DF5C991	W	119	4/16/13	TDA	5/30/15	774	4
3D9.1C2DF6D206	W	115	4/15/13	UTR ${ }^{\text {b }}$	6/09/15	785	4
3D9.1C2DF60BC1	W	110	4/16/13	TFH	5/16/15	760	4
3D9.1C2DF75306	W	102	4/17/13	TFH ${ }^{\text {b }}$	6/12/15	786	4
3D9.1C2DF60D90	W	106	4/17/13	TFH ${ }^{\text {b }}$	5/22/15	765	4
3D9.1C2DF58555	W	109	4/20/13	TFH	5/19/15	759	4
3D9.1C2DF601C4	W	124	4/23/13	TFH	5/27/15	764	4
384.3B23A32AAE	W	121	4/28/13	TFH	6/24/15	787	4
384.3B23A1F5CC	W	110	4/28/13	TFH	5/19/15	751	4
384.3B23A2D320	W	100	5/01/13	TFH	5/18/15	747	4
384.3B23A2DA29	W	117	5/03/13	TFH ${ }^{\text {b }}$	5/23/15	750	4
384.3B23A21153	W	124	5/04/13	TFH ${ }^{\text {b }}$	5/19/15	743	4

Abbreviations are as follows: BON - Bonneville Dam, TDA - The Dalles Dam, MCN - McNary Dam, ICH - Ice Harbor Dam, LTR - Lower Tucannon River, MTR

- Middle Tucannon River, UTR - Upper Tucannon River, LGO - Little Goose Dam, LGR - Lower Granite Dam, AFC - Asotin Creek.
${ }^{\text {a }}$ PIT tag adult detection systems were in operation beginning in 1988 for LGR, 1998 for BON, 2002 for MCN, 2005 for both ICH and LTR, 2011 for MTR and UTR, and 2012 for TFH.
${ }^{\mathrm{b}}$ This fish was detected bypassing the Tucannon River (LGO or LGR detection) before heading back downstream.

Appendix F (continued). Final PIT tag detections of returning Tucannon River spring Chinook from fish originally tagged as juveniles from the Tucannon River.

PIT Tag ID	Release Data			Adult Return Final Detection Data ${ }^{\text {a }}$			
	Origin	$\begin{gathered} \text { Length } \\ \text { (mm) } \end{gathered}$	Release Date	OBS	OBS Date	Travel Time	Est. Age
384.3B23A34FB8	W	120	5/04/13	UTR ${ }^{\text {b }}$	6/02/15	759	4
384.3B23A2D2F9	W	100	5/07/13	TFH	5/29/15	752	4
384.3B23A1E082	W	115	5/11/13	TFH ${ }^{\text {b }}$	5/23/15	742	4
384.3B23A48C3E	H	140	4/17/14	TFH ${ }^{\text {b }}$	6/15/15	424	3
384.3B23B1952B	H	154	4/17/14	TDA	6/01/15	410	3
384.3B23B1ADEC	H	118	4/17/14	TFH ${ }^{\text {b }}$	6/22/15	431	3
384.3B23B1DB32	H	140	4/17/14	TFH	6/08/15	417	3
384.3B23B1DF51	H	123	4/17/14	MTR	6/22/15	431	3
384.3B23B23BDC	H	107	4/17/14	TFH ${ }^{\text {b }}$	6/24/15	433	3
384.3B23B23C7F	H	159	4/17/14	TFH ${ }^{\text {b }}$	5/31/15	409	3
384.3B23B24F47	H	134	4/17/14	LGR	6/07/15	416	3
384.3B23A74AE0	H	151	4/17/14	UTR	6/16/15	425	3
384.3B23A7EDC3	H	163	4/17/14	TFH ${ }^{\text {b }}$	6/14/15	423	3
384.3B23A88231	H	166	4/17/14	UTR ${ }^{\text {b }}$	5/28/15	406	3
384.3B23A935F2	H	120	4/17/14	TFH ${ }^{\text {b }}$	5/24/15	402	3
384.3B23A94E4D	H	114	4/17/14	MTR ${ }^{\text {b }}$	6/13/15	422	3
384.3B23A95BAA	H	155	4/17/14	LGR	6/03/15	412	3
384.3B23A98410	H	115	4/17/14	TFH ${ }^{\text {b }}$	8/02/15	439	3
384.3B23AA49B7	H	124	4/17/14	TFH ${ }^{\text {b }}$	6/17/15	425	3
3D9.1C2DB6EEA0	H	140	4/17/14	UTR ${ }^{\text {b }}$	6/01/15	410	3
3D9.1C2DB7680C	H	162	4/17/14	UTR ${ }^{\text {b }}$	6/22/15	431	3
3D9.1C2DC064C9	H	126	4/17/14	MCN	6/06/15	415	3
3D9.1C2DCA985B	H	127	4/17/14	UTR	6/18/15	427	3

Abbreviations are as follows: BON - Bonneville Dam, TDA - The Dalles Dam, MCN - McNary Dam, ICH - Ice Harbor Dam, LTR - Lower Tucannon River, MTR

- Middle Tucannon River, UTR - Upper Tucannon River, LGO - Little Goose Dam, LGR - Lower Granite Dam, AFC - Asotin Creek.
${ }^{\text {a }}$ PIT tag adult detection systems were in operation beginning in 1988 for LGR, 1998 for BON, 2002 for MCN, 2005 for both ICH and LTR, 2011 for MTR and UTR, and 2012 for TFH.
${ }^{\mathrm{b}}$ This fish was detected bypassing the Tucannon River (LGO or LGR detection) before heading back downstream.

Appendix G: Historical Hatchery Releases (1987-2016 Release Years)

Appendix G. Historical hatchery spring Chinook releases from the Tucannon River, 1987-2016 release years. (Totals are summation by brood year and release year.)

$\begin{gathered} \text { Release } \\ \text { Year } \end{gathered}$	Brood	Release		$\begin{aligned} & \hline \text { CWT } \\ & \text { Code }^{\text {b }} \end{aligned}$	Number CWT	Ad-only marked	AdditionalTag/location/cross ${ }^{\text {c }}$	Kg	Mean Wt. (g)
		Type ${ }^{\text {a }}$	Date						
1987	1985	H-Acc	4/6-10	34/42	12,922			986	76
Total					12,922				
1988	1986	H-Асс	3/7	33/25	12,328	512		628	45
		,	"	41/46	12,095	465		570	45
		"	"	41/48	13,097	503		617	45
		"	4/13	33/25	37,893	1,456		1,696	45
		"	"	41/46	34,389	1,321		1,621	45
		"	"	41/48	37,235	1,431		1,756	45
Total					147,037	5,688			
1989	1987	H-Асс	4/11-13	49/50	151,100	1,065		7,676	50
Total					151,100	1,065			
1990	1988	H-Асс	3/30-4/10	55/01	68,591	3,007		2,955	41
			"	01/42	70,459	3,089		3,035	41
Total					139,050	6,096			
1991	1989	H-Acc	4/1-12	14/61	75,661	989		3,867	50
		"	"	01/31	22,118	289		1,130	50
Total					97,779	1,278			
1992	1990	H-Acc	3/30-4/10	40/21	51,149		BWT, RC, WxW	2,111	41
		\%	,	43/11	21,108		BWT, LC, HxH	873	41
		"	"	37/25	13,480		Mixed	556	41
Total					85,737				
1993	1991	H-Асc	4/6-12	46/25	55,716	796	VI, LR, WxW	1,686	30
		"	"	46/47	16,745	807	VI, RR, HxH	507	30
Total					72,461	1,603			
1993	1992	Direct	10/22-25	48/23	24,883	251	VI, LR, WxW	317	13
		"	,	48/24	24,685	300	VI, RR, HxH	315	13
		"	"	48/56	7,111	86	Mixed	91	13
Total					$\underline{56,679}$	637			
1994	1992	H-Acc	4/11-18	48/10	35,405	871	VI, LY, WxW	1,176	32
		"	,	49/05	35,469	2,588	VI, RY, HxH	1,234	32
		"	"	48/55	8,277	799	Mixed	294	32
Total					79,151	4,258			
1995	1993	H-Acc	3/15-4/15	53/43	45,007	140	VI, RG, HxH	1,437	32
		"	"	53/44	42,936	2,212	VI, LG, WxW	1,437	32
		P-Acc	3/20-4/3	56/15	11,661	72	VI, RR, HxH	355	30
		"	"	56/17	10,704	290	VI, LR, WxW	333	30
		"	"	56/18	13,705	47	Mixed	416	30
		Direct	3/20-4/3	56/15	3,860	24	VI, RR, HxH	118	30
		"	"	56/17	3,542	96	VI, LR, WxW	110	30
		"	"	56/18	4,537	15	Mixed	138	30
Total					135,952	$\underline{2,896}$			
1996	1994	H-Acc	3/16-4/22	56/29	89,437		VI, RR, Mixed	2,326	26
		P-Acc	3/27-4/19	57/29	35,334	35	VI, RG, Mixed	1,193	30
		Direct	3/27	43/23	5,263		VI, LG, Mixed	168	34
Total					130,034	$\underline{35}$			

Appendix G (continued). Historical hatchery spring Chinook releases from the Tucannon River, 1987-2016 release years. (Totals are summation by brood year and release year.)

Release Year	Brood	Release		$\begin{aligned} & \hline \text { CWT } \\ & \text { Code } \end{aligned}$	Number CWT	Ad-only marked	Additional Tag/location/cross ${ }^{\text {c }}$	Kg	$\begin{gathered} \hline \text { Mean } \\ \text { Wt. (g) } \end{gathered}$
		Typa ${ }^{\text {a }}$	Date						
1997	1995	H-Acc	3/07-4/18	59/36	42,160	40	VI, RR, Mixed	1,095	26
		P-Acc	3/24-3/25	61/41	10,045	50	VI, RB, Mixed	244	24
		Direct	3/24	61/40	9,811	38	VI, LB, Mixed	269	27
Total					62,016	128			
1998	1996	H-Acc	3/11-4/17	03/60	14,308	27	Mixed	410	29
		C-Acc	3/11-4/18	61/25	23,065	62	"	680	29
		"	"	61/24	24,554	50	"	707	29
		Direct	4/03	03/59	14,101	52	"	392	28
Total					76,028	191			
1999	1997	C-Acc	3/11-4/20	61/32	23,664	522	Mixed	704	29
Total					23,664	522			
2000	1998	C-Acc	3/20-4/26	12/11	125,192	2,747	Mixed	4,647	36
Total					125,192	2,747			
2001	1999	C-Acc	3/19-4/25	02/75	96,736	864	Mixed	4,180	43
Total					$\underline{96,736}$	864			
2002	2000	C-Acc	3/15-4/23	08/87	99,566	2,533 ${ }^{\text {e }}$	VI, RR, Mixed	2,990	29
Total					99,566	2,533 ${ }^{\text {e }}$			
2002	2000CB	C-Acc	3/15/4/23	63	3,031	$24^{\text {f }}$	CB, Mixed	156	51
Total					3,031	$24^{\text {f }}$			
2002	2001	Direct	5/06	14/29	19,948	1,095	Mixed	77	4
Total					19,948	1,095			
2002	2001CB	Direct	5/06	14/30	20,435	157	CB, Mixed	57	3
Total					20,435	157			
2003	2001	C-Acc	4/01-4/21	06/81	144,013	2,909 ${ }^{\text {e }}$	VI, RR, Mixed	5,171	35
Total					144,013				
2003	2001CB	C-Acc	4/01-4/21	63	134,401	5,995 ${ }^{\text {f }}$	CB, Mixed	4,585	33
Total					134,401	5,995 ${ }^{\text {f }}$			
2004	2002	C-Acc	4/01-4/20	17/91	121,774	1,812 ${ }^{\text {e }}$	VI, RR, Mixed	4,796	39
Total					121,774				
2004	2002CB	C-Acc	4/01-4/20	63	42,875	$1,909{ }^{\text {f }}$	CB, Mixed	1,540	34
Total					42,875	1,909 ${ }^{\text {f }}$			
2005	2003	C-Acc	3/28-4/15	24/82	69,831	$1,323^{\text {e }}$	VI, RR, Mixed	2,544	36
Total					69,831	1,323 ${ }^{\text {e }}$			
2005	2003CB	C-Acc	3/28-4/15	27/78	125,304	$4,760^{\text {f }}$	CB, Mixed	4,407	34
Total					125,304	$\underline{4,760}{ }^{\text {f }}$			
2006	2004	C-Acc	4/03-4/26	28/87	67,272	$270{ }^{\text {e }}$	VI, RR, Mixed	2,288	34
Total					67,272	$\underline{270}{ }^{\text {e }}$			
2006	2004CB	C-Acc	4/03-4/26	28/65	127,162	$5,150{ }^{\text {f }}$	CB, Mixed	3,926	30
Total					127,162	5,150 ${ }^{\text {f }}$			
2007	2005	C-Acc	4/02-4/23	35/99	144,833	4,633 ${ }^{\text {e }}$	VI, RR, Mixed	8,482	57
Total					144,833	$\underline{4,633^{\text {e }}}$			
2007	2005CB	C-Acc	4/02-4/23	34/77	$88,885$	$1,171^{\mathrm{T}}$	CB, Mixed	5,525	61
Total					88,885	$\mathbf{1 , 1 7 1}{ }^{\mathrm{f}}$			

Appendix G (continued). Historical hatchery spring Chinook releases from the Tucannon River, 1987-2016 release years. (Totals are summation by brood year and release year.)

Release Year	Brood	Release		$\begin{aligned} & \hline \text { CWT } \\ & \text { Code }^{\text {b }} \end{aligned}$	Number CWT	Ad-only marked	Additional Tag/location/cross ${ }^{\text {c }}$	Kg	$\begin{gathered} \text { Mean } \\ \text { Wt. (g) } \end{gathered}$
		Type ${ }^{\text {a }}$	Date						
2008	2006	C-Acc	4/08-4/22	40/93	50,309	2,426 ${ }^{\text {e }}$	VI, LB, Mixed	2,850	54
2008	2006	C-Acc	4/08-4/22	40/94	51,858	1,937 ${ }^{\text {e }}$	VI, LP, Mixed	2,106	39
Total					102,167	4,363 ${ }^{\text {e }}$			
2008	2006CB	C-Acc	4/08-4/22	41/94	75,283	2,893 ${ }^{\text {f }}$	CB, Mixed	4,493	57
Total					75,283	$\underline{2,893}{ }^{\text {f }}$			
2009	2007	C-Acc	4/13-4/22	46/88	55,266	$214{ }^{\text {e }}$	VI, LB, Mixed	3,188	57
2009	2007	C-Acc	4/13-4/22	46/87	58,044	1,157 ${ }^{\text {e }}$	VI, LP, Mixed	2,203	37
Total					113,310	1,371 ${ }^{\text {e }}$			
2010	2008	C-Acc	4/2-4/12	51/75	84,738	1,465 ${ }^{\text {e }}$	VI, LB, Mixed	5,672	66
2010	2008	C-Acc	4/2-4/12	51/74	84,613	2,081 ${ }^{\text {e }}$	VI, LP, Mixed	3,423	40
Total					169,351	3,546 ${ }^{\text {e }}$			
2010	2009	Direct	4/22-4/23	None	0	52,253 ${ }^{\text {f }}$	Oxytet., Mixed	342	7
Total					$\underline{0}$	$\underline{52,253}{ }^{\text {f }}$			
2011	2009	C-Acc	4/7-4/25	55/66	113,049	$0^{\text {e }}$	VI, LB, Mixed	5,767	51
2011	2009	C-Acc	4/7-4/25	55/65	117,824	$564{ }^{\text {e }}$	VI, LP, Mixed	4,135	35
Total					230,873	$564{ }^{\text {e }}$			
2012	2010	C-Acc	4/11-4/23	60/76	96,984	$275{ }^{\text {e }}$	VI, LB, Mixed	6,400	66
2012	2010	C-Acc	4/11-4/23	60/75	102,169	2,157 ${ }^{\text {e }}$	VI, LP, Mixed	3,312	32
Total					199,153	2,432 ${ }^{\text {e }}$			
2012	2011	Direct	5/01	None	0	$39,460{ }^{\text {f }}$	Oxytet., Mixed	285	7
Total					0	39,460 ${ }^{\text {f }}$			
2013	2011	C-Acc	4/3-4/22	64/42	27,748	$1,825^{\text {f }}$	TFH reared, Mixed	987	33
2013	2011	C-Acc	4/3-4/22	64/41	227,703	2,688 ${ }^{\text {f }}$	LFH reared, Mixed	7,691	33
Total					255,451	4,513 ${ }^{\text {f }}$			
2014	2012	C-Acc	4/11-4/23	65/86	21,101	$1,916^{\text {f }}$	TFH reared, Mixed	746	32
2014	2012	C-Acc	4/11-4/23	65/85	179,400	1,093 ${ }^{\text {f }}$	LFH reared, Mixed	5,853	32
Total					200,501	3,009 ${ }^{\text {f }}$			
2015	2013	C-Acc	3/27-4/16	67/43	20,373	3,061 ${ }^{1}$	TFH reared, Mixed	872	37
2015	2013	C-Acc	3/27-4/16	67/42	179,494	4,931 ${ }^{\text {f }}$	LFH reared, Mixed	6,863	37
Total					199,867	7,992 ${ }^{\text {f }}$			
2016	2014	C-Acc	4/01-4/15	68/84	216,295	4,804 ${ }^{\text { }}$	Mixed	8,883	40
Total					216,295	$\underline{4,804^{\text {f }}}$			

a Release types are: Tucannon Hatchery Acclimation Pond (H-Acc); Portable Acclimation Pond (P-Acc); Curl Lake Acclimation Pond (C-Acc); and Direct Stream Release (Direct).
b All tag codes start with agency code 63.
c Codes listed in column are as follows: BWT - Blank Wire Tag; CB - Captive Brood; VI-Visual Implant (elastomer); LR - Left Red, RR Right Red, LG-Left Green, RG - Right Green, LY - Left Yellow, RY - Right Yellow, LB - Left Blue, RB - Right Blue, LP - Left Purple; Oxytet. - Oxytetracycline Mark; Crosses: WxW - wild x wild progeny, HxH - hatchery x hatchery progeny, Mixed - wild x hatchery progeny.
${ }^{\text {d }}$ No tag loss data due to presence of both CWT and BWT in fish.
e VI tag only.
${ }^{f}$ No wire.

Appendix H: Numbers of Fish Species Captured by Month in the Tucannon River Smolt Trap during the 2015 Outmigration

Appendix H. Numbers of fish species captured by month in the Tucannon River smolt trap during the 2015 outmigration sampling period (13 October, 2014 - 26 June, 2015).

Species	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Total
Nat. spring Chinook	2	4	8	7	8	57	191	117	12	406
Hatchery Spring										
Chinook							5,392	1,128	1	6,521
Fall Chinook				7	35	1,422	831	12,305	695	15,295
Coho salmon						8	25	240	6	279
Bull trout			2		1					3
Steelhead < 80 mm						1	26	712	100	839
Steelhead 80-124 mm	1	10	14	11	1	1				38
Steelhead $\geq 125 \mathrm{~mm}$		22	17	6	2	7	47	187		288
Hatch. endemic										
Steelhead							40	210	2	252
Pacific lamprey -										
Ammocoetes		1	91	9	13	4	3	1		122
Pacific lamprey -										
Macropthalmia		6	44	40	18					108
Pacific lamprey -										
Adults								2		2
Smallmouth bass	1			2	3	9	9	56	4	84
Pumpkinseed sunfish	1	2		2	2	3	3	8	2	23
Chiselmouth	1		2			5	12	119	15	154
Banded killifish								1		1
Longnose dace	3	1			1	8	9	62	12	96
Speckled dace							5			5
Redside shiner		1					13	58	16	88
Sand roller								1		1
American shad				2						2
Bridgelip sucker	1		9	7	2		4	13	4	40
Northern pikeminnow		1	2	1	3	2	4	53	7	73
Brown bullhead	1							75	6	82
Sculpin sp.								1		1

Appendix I: Proportionate Natural Influence (PNI) for the Tucannon Spring Chinook Population (1985-2015)

Appendix I. Proportionate Natural Influence (PNI) ${ }^{\text {a }}$ for the Tucannon River spring Chinook population (1985-2015). Note: Pre-spawn and trap mortalities are excluded from the analysis.

Spawned Hatchery Broodstock			River Spawning Fish			
Year	Total	\% Natural (PNOB)	Total	\% Hatchery (PHOS)	PNI	$\begin{gathered} \text { PNI } \\ <\mathbf{0 . 5 0} \end{gathered}$
1985	8	100.00	695	0.00	1.00	
1986	91	100.00	440	0.00	1.00	
1987	83	100.00	407	0.00	1.00	
1988	90	100.00	257	0.00	1.00	
1989	122	45.08	276	1.09	0.98	
1990	62	48.39	572	21.50	0.69	
1991	71	56.34	291	32.30	0.64	
1992	82	45.12	476	35.92	0.56	
1993	87	51.72	397	38.29	0.57	
1994	69	50.72	97	0.00	1.00	
1995	39	23.08	27	0.00	1.00	
1996	75	44.00	152	23.03	0.66	
1997	89	42.70	105	35.24	0.55	
1998	86	52.33	60	26.67	0.66	
1999	122	0.82	160	97.50	0.01	*
2000	73	10.96	201	69.15	0.14	*
2001	104	50.00	766	19.84	0.72	
2002	93	45.16	568	60.56	0.43	*
2003	75	54.67	329	25.84	0.68	
2004	88	54.55	346	17.34	0.76	
2005	95	49.47	264	19.70	0.72	
2006	88	40.91	202	24.26	0.63	
2007	82	62.20	211	22.27	0.74	
2008	114	35.09	796	38.94	0.47	*
2009	173	50.87	1,191	49.29	0.51	
2010	161	50.31	938	42.22	0.54	
2011	166	53.61	849	29.68	0.64	
2012	164	56.10	335	30.15	0.65	
2013	149	62.42	170	30.59	0.67	
2014	126	67.46	294	27.55	0.71	
2015	126	79.37	523	66.92	0.54	

${ }^{\mathrm{a}}$ PNI = PNOB/(PNOB + PHOS).
PNOB = Percent natural origin fish in the hatchery broodstock.
PHOS $=$ Percent hatchery origin fish among naturally spawning fish.

Appendix J: Recoveries of Coded-Wire Tagged Salmon Released Into the Tucannon River for the 1985-2011 Brood Years

Appendix J. Observed and estimated recoveries of coded-wire tagged salmon released into the Tucannon River with percent return to the Tucannon Basin, out-of-basin returns, and estimated survival and exploitation rates for the 1985-2011 brood years. (Data downloaded from RMIS database on 2/19/16.)

Brood Year	1985		1986		1987	
Smolts Released	12,922		147,037		151,100	
Fish Size (g)	76		45		50	
CWT Codes ${ }^{\text {a }}$	34/42		33/25, 41/46, 41/48		49/50	
Release Year	1987		1988		1989	
Agency (fishery/location)	Observed Number	Estimated Number	Observed Number	Estimated Number	Observed Number	Estimated Number
WDFW						
Tucannon River			30	84	28	130
Kalama R., Wind R.						
Fish Trap - F.W.						
Treaty Troll			1	2		
Lyons Ferry Hatch. ${ }^{\text {b }}$	32	38	136	280	53	71
F.W. Sport			1	4		
ODFW						
Test Net, Zone 4	1	1	1	1		
Treaty Ceremonial			2	4	1	2
Three Mile, Umatilla R.						
Spawning Ground						
Fish Trap - F.W.						
F.W. Sport						
Hatchery						
CDFO						
Non-treaty Ocean Troll			1	4		
Mixed Net \& Seine						
Ocean Sport						
USFWS						
Warm Springs Hatchery						
Dworshak NFH						
IDFG						
Hatchery						
Total Returns	33	39	172	379	82	203
Tucannon (\%)	97.4		96.0		99.0	
Out-of-Basin (\%)	0.0		0.0		0.0	
Commercial Harvest (\%)	2.6		1.8		0.0	
Sport Harvest (\%)	0.0		1.1		0.0	
Treaty Ceremonial (\%)	0.0		1.1		1.0	
Other (\%)	0.0		0.0		0.0	
Survival	0.30		0.26		0.13	

${ }^{\text {a }}$ WDFW agency code prefix is 63.
${ }^{\mathrm{b}}$ Fish trapped at TFH and held at LFH for spawning.

Appendix J (continued). Observed and estimated recoveries of coded-wire tagged salmon released into the Tucannon River with percent return to the Tucannon Basin, out-of-basin returns, and estimated survival and exploitation rates for the 1985-2011 brood years. (Data downloaded from RMIS database on 2/19/16.)

${ }^{a}$ WDFW agency code prefix is 63.
${ }^{\mathrm{b}}$ Fish trapped at TFH and held at LFH for spawning.

Appendix J (continued). Observed and estimated recoveries of coded-wire tagged salmon released into the Tucannon River with percent return to the Tucannon Basin, out-of-basin returns, and estimated survival and exploitation rates for the 1985-2011 brood years. (Data downloaded from RMIS database on 2/19/16.)

Brood Year	1991		1992		1992	
Smolts Released	72,461		56,679		79,151	
Fish Size (g)	30$46 / 25,46 / 47$		13		32	
CWT Codes ${ }^{\text {a }}$			48/23,	$4,48 / 56$	$48 / 10,48$	5, 49/05
Release Year	1993		1993		1994	
Agency (fishery/location)	Observed Number	Estimated Number	Observed Number	Estimated Number	Observed Number	Estimated Number
WDFW						
Tucannon River					11	34
Kalama R., Wind R.						
Fish Trap - F.W.						
Treaty Troll						
Lyons Ferry Hatch. ${ }^{\text {b }}$	24	24	2	2	45	47
F.W. Sport						
ODFW						
Test Net, Zone 4						
Treaty Ceremonial	1	3			1	1
Three Mile, Umatilla R.						
Spawning Ground	1	1			2	2
Fish Trap - F.W.			1	1	5	9
F.W. Sport					2	2
Hatchery						
CDFO						
Non-treaty Ocean Troll						
Mixed Net \& Seine			1	2		
Ocean Sport						
USFWS						
Warm Springs Hatchery					3	3
Dworshak NFH						
IDFG						
Hatchery						
Total Returns	26	28	4	5	69	98
Tucannon (\%)	85.7		40.0		82.7	
Out-of-Basin (\%)	3.6		20.0		14.3	
Commercial Harvest (\%)	0.0		40.0		0.0	
Sport Harvest (\%)	0.0		0.0		2.0	
Treaty Ceremonial (\%)	10.7		0.0		1.0	
Other (\%)	0.0		0.0		0.0	
Survival	0.04		0.01		0.12	

a WDFW agency code prefix is 63.
${ }^{\mathrm{b}}$ Fish trapped at TFH and held at LFH for spawning.

Appendix J (continued). Observed and estimated recoveries of coded-wire tagged salmon released into the Tucannon River with percent return to the Tucannon Basin, out-of-basin returns, and estimated survival and exploitation rates for the 1985-2011 brood years. (Data downloaded from RMIS database on 2/19/16.)

Brood Year Smolts Released Fish Size (g) CWT Codes ${ }^{\text {a }}$ Release Year	1993 135,952 $30-32$ $56 / 15,56 / 17-18,53 / 43-44$ 1995		1994 130,034 $25-35$ $43 / 23,56 / 29,57 / 29$ 1996		199562,016$24-27$$59 / 36,61 / 40,61 / 41$1997	
Agency (fishery/location)	Observed Number	Estimated Number	Observed Number	$\begin{gathered} \hline \text { Estimated } \\ \text { Number } \\ \hline \end{gathered}$	Observed Number	Estimated Number
WDFW Tucannon River Kalama R., Wind R. Fish Trap - F.W. Treaty Troll Lyons Ferry Hatch. ${ }^{\text {b }}$ F.W. Sport	42 66	138 66	21	8 21	36 94	92 94
ODFW Test Net, Zone 4 Treaty Ceremonial Three Mile, Umatilla R. Spawning Ground Fish Trap - F.W. F.W. Sport Hatchery	$\begin{aligned} & 3 \\ & 3 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 1 \\ & 1 \end{aligned}$			1	1
CDFO Non-treaty Ocean Troll Mixed Net \& Seine Ocean Sport USFWS Warm Springs Hatchery Dworshak NFH IDFG Hatchery	1	3				
Total Returns	117	215	24	29	132	188
Tucannon (\%) Out-of-Basin (\%) Commercial Harvest (\%) Sport Harvest (\%) Treaty Ceremonial (\%) Other (\%) Survival						

[^11]b Fish trapped at TFH and held at LFH for spawning.

Appendix J (continued). Observed and estimated recoveries of coded-wire tagged salmon released into the Tucannon River with percent return to the Tucannon Basin, out-of-basin returns, and estimated survival and exploitation rates for the 1985-2011 brood years. (Data downloaded from RMIS database on 2/19/16.)

Brood Year	1996		1997		1998	
Smolts Released	76,028		23,509		124,093	
Fish Size (g)	28		28		35	
CWT Codes ${ }^{\text {a }}$	03/59-60, 61/24-25		61/32		12/11	
Release Year	1998		1999		2000	
Agency (fishery/location)	Observed Number	Estimated Number	Observed Number	Estimated Number	Observed Number	Estimated Number
WDFW						
Tucannon River	43	139	17	85	147	680
Kalama R., Wind R.						
Fish Trap - F.W.	1	1				
Treaty Troll						
Lyons Ferry Hatch. ${ }^{\text {b }}$	96	99	44	46	83	83
F.W. Sport					3	14
Non-treaty Ocean Troll					1	2
ODFW						
Test Net, Zone 4					1	1
Treaty Ceremonial					5	5
Three Mile, Umatilla R.						
Spawning Ground					1	1
Fish Trap - F.W.	1	1	2	2	8	10
F.W. Sport					2	4
Hatchery	2	2	1	1		
Columbia R. Gillnet			7	22	32	85
Columbia R. Sport			2	15	17	94
CDFO						
Non-treaty Ocean Troll						
Mixed Net \& Seine						
Ocean Sport						
USFWS						
Warm Springs Hatchery						
Dworshak NFH						
IDFG						
Hatchery	1	1	1	1		
Total Returns	144	243	74	172	300	979
Tucannon (\%)						
Out-of-Basin (\%)						
Commercial Harvest (\%)						
Sport Harvest (\%)						
Treaty Ceremonial (\%)						
Other (\%)						
Survival						

[^12]Appendix J (continued). Observed and estimated recoveries of coded-wire tagged salmon released into the Tucannon River with percent return to the Tucannon Basin, out-of-basin returns, and estimated survival and exploitation rates for the 1985-2011 brood years. (Data downloaded from RMIS database on 2/19/16.)

Brood Year	1999		2000		2001	
Smolts Released	96,736		99,566		144,013	
Fish Size (g)	43		29		35	
CWT Codes ${ }^{\text {a }}$	02/75		08/87		06/81	
Release Year	2001		2002		2003	
Agency (fishery/location)	Observed Number	Estimated Number	Observed Number	Estimated Number	Observed Number	Estimated Number
WDFW						
Tucannon River	2	12	13	37	6	26
Kalama R., Wind R.						
Fish Trap - F.W.						
Treaty Troll						
Lyons Ferry Hatch. ${ }^{\text {b }}$	6	6	39	39	51	51
F.W. Sport						
Non-treaty Ocean Troll						
ODFW						
Test Net, Zone 4						
Treaty Ceremonial						
Three Mile, Umatilla R.						
Spawning Ground						
Fish Trap - F.W.						
F.W. Sport						
Hatchery						
Columbia R. Gillnet	1	3	1	1		
Columbia R. Sport						
CDFO						
Non-treaty Ocean Troll					1	5
Mixed Net \& Seine						
Ocean Sport						
USFWS						
Warm Springs Hatchery						
Dworshak NFH						
IDFG						
Hatchery						
Total Returns	9	21	53	77	58	82
Tucannon (\%)						
Out-of-Basin (\%)						
Commercial Harvest (\%)						
Sport Harvest (\%)						
Treaty Ceremonial (\%)						
Other (\%)						
Survival						

WDFW agency code prefix is 63.
${ }^{\mathrm{b}}$ Fish trapped at TFH and held at LFH for spawning.

Appendix J (continued). Observed and estimated recoveries of coded-wire tagged salmon released into the Tucannon River with percent return to the Tucannon Basin, out-of-basin returns, and estimated survival and exploitation rates for the 1985-2011 brood years. (Data downloaded from RMIS database on 2/19/16.)

Brood Year	2001		2002		2003	
Smolts Released	19,948		121,774		69,831	
Fish Size (g)	4		39		36	
CWT Codes ${ }^{\text {a }}$	14/29		17/91		24/82	
Release Year	2002		2004		2005	
Agency (fishery/location)	Observed Number	Estimated Number	Observed Number	Estimated Number	Observed Number	Estimated Number
WDFW						
Tucannon River			11	47	5	21
Kalama R., Wind R.						
Fish Trap - F.W.						
Treaty Troll						
Lyons Ferry Hatch. ${ }^{\text {b }}$			58	58	21	21
F.W. Sport						
Non-treaty Ocean Troll						
ODFW						
Test Net, Zone 4						
Treaty Ceremonial						
Three Mile, Umatilla R.						
Spawning Ground						
Fish Trap - F.W.						
F.W. Sport						
Hatchery						
Columbia R. Gillnet	1	1				
Columbia R. Sport						
CDFO						
Non-treaty Ocean Troll						
Mixed Net \& Seine						
Ocean Sport						
USFWS						
Warm Springs Hatchery						
Dworshak NFH						
IDFG						
Hatchery						
Total Returns	1	1	69	105	26	42
Tucannon (\%)						
Out-of-Basin (\%)						
Commercial Harvest (\%)						
Sport Harvest (\%)						
Treaty Ceremonial (\%)						
Other (\%)						
Survival						

a WDFW agency code prefix is 63.
${ }^{\mathrm{b}}$ Fish trapped at TFH and held at LFH for spawning.

Appendix J (continued). Observed and estimated recoveries of coded-wire tagged salmon released into the Tucannon River with percent return to the Tucannon Basin, out-of-basin returns, and estimated survival and exploitation rates for the 1985-2011 brood years. (Data downloaded from RMIS database on 2/19/16.)

[^13]Appendix J (continued). Observed and estimated recoveries of coded-wire tagged salmon released into the Tucannon River with percent return to the Tucannon Basin, out-of-basin returns, and estimated survival and exploitation rates for the 1985-2011 brood years. (Data downloaded from RMIS database on 2/19/16.)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Brood Year \\
Smolts Released \\
Fish Size (g) \\
CWT Codes \({ }^{\text {a }}\) \\
Release Year
\end{tabular} \& \multicolumn{2}{|c|}{\begin{tabular}{c}
2005 \\
88,885 \\
61 \\
\(34 / 77 \mathrm{CB}\) \\
2007 \\
\hline
\end{tabular}} \& \multicolumn{2}{|c|}{\begin{tabular}{c}
2005 \\
144,833 \\
57 \\
\(35 / 99\) \\
2007 \\
\hline
\end{tabular}} \& \multicolumn{2}{|c|}{\[
\begin{gathered}
\hline 2006 \\
75,283 \\
57 \\
41 / 94 \mathrm{CB} \\
2008 \\
\hline
\end{gathered}
\]} \\
\hline \begin{tabular}{l}
Agency \\
(fishery/location)
\end{tabular} \& Observed Number \& \[
\begin{gathered}
\hline \text { Estimated } \\
\text { Number } \\
\hline
\end{gathered}
\] \& Observed Number \& Estimated Number \& Observed Number \& Estimated Number \\
\hline \begin{tabular}{l}
WDFW \\
Tucannon River Kalama R., Wind R. \\
Fish Trap - F.W. \\
Treaty Troll Lyons Ferry Hatch. \({ }^{\text {b }}\) F.W. Sport Non-treaty Ocean Troll
\end{tabular} \& 78
3 \& 298

3 \& 130

$$
96
$$ \& \[

494
\]

$$
97
$$ \& 68

4 \& 384

\hline | ODFW |
| :--- |
| Test Net, Zone 4 |
| Treaty Ceremonial Three Mile, Umatilla R. Spawning Ground Fish Trap - F.W. |
| F.W. Sport Hatchery Columbia R. Gillnet Columbia R. Sport Juv. Marine Seine | \& 1 \& 1 \& 2 \& 2 \& 3 \& \[

26
\]

$$
3
$$

\hline | CDFO |
| :--- |
| Non-treaty Ocean Troll |
| Mixed Net \& Seine |
| Ocean Sport |
| USFWS |
| Warm Springs Hatchery Dworshak NFH |
| IDFG |
| Hatchery | \& \& \& \& \& \&

\hline Total Returns \& 82 \& 302 \& 228 \& 593 \& 83 \& 418

\hline ```
Tucannon (\%)
Out-of-Basin (\%)
Commercial Harvest (\%)
Sport Harvest (\%)
Treaty Ceremonial (\%)
Other (\%)
Survival

``` & & & & & & \\
\hline
\end{tabular}
a WDFW agency code prefix is 63 .
b Fish trapped at TFH and held at LFH for spawning.

Appendix \(J\) (continued). Observed and estimated recoveries of coded-wire tagged salmon released into the Tucannon River with percent return to the Tucannon Basin, out-of-basin returns, and estimated survival and exploitation rates for the 1985-2011 brood years. (Data downloaded from RMIS database on 2/19/16.)

a WDFW agency code prefix is 63 .
b Fish trapped at TFH and held at LFH for spawning.

Appendix \(J\) (continued). Observed and estimated recoveries of coded-wire tagged salmon released into the Tucannon River with percent return to the Tucannon Basin, out-of-basin returns, and estimated survival and exploitation rates for the 1985-2011 brood years. (Data downloaded from RMIS database on 2/19/16.)

a WDFW agency code prefix is 63 .
b Fish trapped at TFH and held at LFH for spawning.

Appendix \(J\) (continued). Observed and estimated recoveries of coded-wire tagged salmon released into the Tucannon River with percent return to the Tucannon Basin, out-of-basin returns, and estimated survival and exploitation rates for the 1985-2011 brood years. (Data downloaded from RMIS database on 2/19/16.)


\footnotetext{
b WDFW agency code prefix is 63
b Fish trapped at TFH and held at LFH for spawning.
}

Appendix \(J\) (continued). Observed and estimated recoveries of coded-wire tagged salmon released into the Tucannon River with percent return to the Tucannon Basin, out-of-basin returns, and estimated survival and exploitation rates for the 1985-2011 brood years. (Data downloaded from RMIS database on 2/19/16.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Brood Year & \multicolumn{2}{|c|}{2010} & \multicolumn{2}{|c|}{\(2011{ }^{\text {c }}\)} & \multicolumn{2}{|c|}{\(2011{ }^{\text {c }}\)} \\
\hline Smolts Released & \multicolumn{2}{|c|}{96,984} & \multicolumn{2}{|c|}{227,703} & \multicolumn{2}{|c|}{27,748} \\
\hline Fish Size (g) & \multicolumn{2}{|c|}{66} & \multicolumn{2}{|c|}{33} & \multicolumn{2}{|c|}{33} \\
\hline CWT Codes \({ }^{\text {a }}\) & \multicolumn{2}{|c|}{60/76} & \multicolumn{2}{|c|}{64/41} & \multicolumn{2}{|c|}{64/42} \\
\hline Release Year & \multicolumn{2}{|c|}{2012} & \multicolumn{2}{|c|}{2013} & \multicolumn{2}{|c|}{2013} \\
\hline \begin{tabular}{l}
Agency \\
(fishery/location)
\end{tabular} & Observed Number & Estimated
Number & Observed Number & Estimated
Number & Observed Number & Estimated Number \\
\hline \multicolumn{7}{|l|}{WDFW} \\
\hline Tucannon River & 10 & 122 & 8 & 82 & & \\
\hline Kalama R., Wind R. & & & & & & \\
\hline Fish Trap - F.W. & & & 1 & 1 & & \\
\hline Treaty Troll & & & & & & \\
\hline Lyons Ferry Hatch. \({ }^{\text {b }}\) & 22 & 22 & & & & \\
\hline F.W. Sport & & & & & & \\
\hline Non-treaty Ocean Troll & & & & & & \\
\hline \multicolumn{7}{|l|}{ODFW} \\
\hline \multicolumn{7}{|l|}{Test Net, Zone 4} \\
\hline \multicolumn{7}{|l|}{Treaty Ceremonial} \\
\hline \multicolumn{7}{|l|}{Three Mile, Umatilla R.} \\
\hline \multicolumn{7}{|l|}{Spawning Ground} \\
\hline \multicolumn{7}{|l|}{Fish Trap - F.W.} \\
\hline \multicolumn{7}{|l|}{F.W. Sport} \\
\hline \multicolumn{7}{|l|}{Hatchery} \\
\hline Columbia R. Gillnet & & & 4 & 17 & & \\
\hline \multicolumn{7}{|l|}{Columbia R. Sport} \\
\hline \multicolumn{7}{|l|}{Juv. Marine Seine} \\
\hline Non-treaty Ocean Troll & & & 1 & 4 & & \\
\hline \multicolumn{7}{|l|}{CDFO} \\
\hline \multicolumn{7}{|l|}{Non-treaty Ocean Troll} \\
\hline \multicolumn{7}{|l|}{Mixed Net \& Seine} \\
\hline \multicolumn{7}{|l|}{Ocean Sport} \\
\hline \multicolumn{7}{|l|}{USFWS} \\
\hline \multicolumn{7}{|l|}{Warm Springs Hatchery} \\
\hline \multicolumn{7}{|l|}{Dworshak NFH} \\
\hline \multicolumn{7}{|l|}{IDFG} \\
\hline Hatchery & & & & & & \\
\hline Total Returns & 32 & 144 & 14 & 104 & 0 & 0 \\
\hline Tucannon (\%) & & & & & & \\
\hline Out-of-Basin (\%) & & & & & & \\
\hline Commercial Harvest (\%) & & & & & & \\
\hline Sport Harvest (\%) & & & & & & \\
\hline Treaty Ceremonial (\%) & & & & & & \\
\hline Other (\%) & & & & & & \\
\hline Survival & & & & & & \\
\hline
\end{tabular}

\footnotetext{
\({ }^{\text {a }}\) WDFW agency code prefix is 63 .
}
\({ }^{\text {b }}\) Fish trapped at TFH and held at LFH for spawning.
c Data for the 2011 brood year is incomplete.


This program receives Federal financial assistance from the U.S. Fish and Wildlife Service Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972. The U.S. Department of the Interior and its bureaus prohibit discrimination on the bases of race, color, national origin, age, disability and sex (in educational programs). If you believe that you have been discriminated against in any program, activity or facility, please contact the WDFW ADA Program Manager at P.O. Box 43139, Olympia, Washington 98504, or write to

Department of the Interior
Chief, Public Civil Rights Division
1849 C Street NW
Washington D.C. 20240```


[^0]:    ${ }^{1}$ The project area escapement is 1,152 . It was also assumed that four times that number ( 4,608 fish $)$ would be harvested below the project area. Here "project area" is defined as above Ice Harbor Dam.
    ${ }^{2}$ Formerly Washington Department of Fisheries.

[^1]:    ${ }^{a}$ Strata were based on water temperature, habitat, and landowner use.
    ${ }^{\mathrm{b}}$ Rkm descriptions: 0.0-mouth at the Snake River; 20.1-Territorial Rd.; 39.9-Marengo Br.; 55.5-HMA Boundary Fence; 74.5-Panjab Br.; 86.3-Rucherts Camp.

[^2]:    ${ }^{3}$ The use of trade names does not imply endorsement by the Washington Department of Fish and Wildlife.

[^3]:    ${ }^{4}$ This formula was used to separately calculate for jacks and adults bypassing the adult trap. The word "fish" is used as a generic term referring to either adults or jacks.

[^4]:    ${ }^{\text {a }}$ River kilometers used here are from the mouth of Asotin Creek and continue up the north fork of Asotin Creek.
    ${ }^{\mathrm{b}}$ This section was not surveyed in 2015.

[^5]:    ${ }^{\mathrm{a}}$ Fin clipped strays are killed outright at the trap.

[^6]:    ${ }^{\text {a }}$ The expansion is based on subsample rates of the proportion of stray carcasses to Tucannon River origin carcasses from the river. Actual counts are not expanded.

[^7]:    ${ }^{\text {a }}$ The expansion is based on subsample rates of the proportion of stray carcasses to Tucannon River origin carcasses from the river. Actual counts are not expanded.

[^8]:    ${ }^{\text {a }} \quad$ The expansion is based on subsample rates of the proportion of stray carcasses to Tucannon River origin carcasses from the river. Actual counts are not expanded.

[^9]:    Abbreviations are as follows: BON - Bonneville Dam, TDA - The Dalles Dam, MCN - McNary Dam, ICH - Ice Harbor Dam, LTR - Lower Tucannon River, MTR

    - Middle Tucannon River, UTR - Upper Tucannon River, LGO - Little Goose Dam, LGR - Lower Granite Dam, AFC - Asotin Creek.
    ${ }^{\text {a }}$ PIT tag adult detection systems were in operation beginning in 1988 for LGR, 1998 for BON, 2002 for MCN, 2005 for both ICH and LTR, 2011 for MTR and UTR, and 2012 for TFH.
    ${ }^{\mathrm{b}}$ This fish was detected bypassing the Tucannon River (LGO or LGR detection) before heading back downstream.

[^10]:    Abbreviations are as follows: BON - Bonneville Dam, TDA - The Dalles Dam, MCN - McNary Dam, ICH - Ice Harbor Dam, LTR - Lower Tucannon River, MTR

    - Middle Tucannon River, UTR - Upper Tucannon River, LGO - Little Goose Dam, LGR - Lower Granite Dam, AFC - Asotin Creek.
    ${ }^{\text {a }}$ PIT tag adult detection systems were in operation beginning in 1988 for LGR, 1998 for BON, 2002 for MCN, 2005 for both ICH and LTR, 2011 for MTR and UTR, and 2012 for TFH.
    ${ }^{\mathrm{b}}$ This fish was detected bypassing the Tucannon River (LGO or LGR detection) before heading back downstream.

[^11]:    a WDFW agency code prefix is 63.

[^12]:    a WDFW agency code prefix is 63.
    ${ }^{\mathrm{b}}$ Fish trapped at TFH and held at LFH for spawning.

[^13]:    WDFW agency code prefix is 63.
    ${ }^{\mathrm{b}}$ Fish trapped at TFH and held at LFH for spawning.

